Skip to main content

Optimal Transport to a Variety

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Abstract

We study the problem of minimizing the Wasserstein distance between a probability distribution and an algebraic variety. We consider the setting of finite state spaces and describe the solution depending on the choice of the ground metric and the given distribution. The Wasserstein distance between the distribution and the variety is the minimum of a linear functional over a union of transportation polytopes. We obtain a description in terms of the solutions of a finite number of systems of polynomial equations. The case analysis is based on the ground metric. A detailed analysis is given for the two bit independence model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allman, E., et al.: Maximum likelihood estimation of the latent class model through model boundary decomposition. J. Algebraic Stat. 34, 51–84 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875

  3. Bassetti, F., Bodini, A., Regazzini, E.: On minimum Kantorovich distance estimators. Stat. Probab. Lett. 76, 1298–1302 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bernton, E., Jacob, P., Gerber, M., Robert, C.: On parameter estimation with the Wasserstein distance. Inf. Infer. J. IMA 8(4), 657–676 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, Proceedings NIPS 2013, pp. 2292–2300 (2013)

    Google Scholar 

  6. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25. Springer-Verlag, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12971-1

    Book  MATH  Google Scholar 

  7. Duarte, E., Marigliano, O., Sturmfels, B.: Discrete statistical models with rational maximum likelihood estimator. arXiv:1903.06110

  8. Kulas, K., Joswig, M.: Tropical and ordinary convexity combined. Adv. Geom. 10, 333–352 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Lasserre, J.: An Introduction to Polynomial and Semi-Algebraic Optimization, Texts in Applied Mathematics. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  10. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer-Verlag, New York (2005). https://doi.org/10.1007/b138602

    Book  MATH  Google Scholar 

  11. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 460–467, September 2009

    Google Scholar 

  12. Peyre, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11, 355–607 (2019)

    Article  Google Scholar 

  13. Rostalski, P., Sturmfels, B.: Dualities in convex algebraic geometry. Rendiconti di Matematica 30, 285–327 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Seigal, A., Montúfar, G.: Mixtures and products in two graphical models. J. Alg. Stat. 9, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  16. Sullivant, S.: Algebraic Statistics. Graduate Studies in Math. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  17. Villani, C.: Optimal Transport: Old and New. Grundlehren Series, vol. 338. Springer Verlag, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  18. Weed, J., Bach, F.: Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. arXiv:1707.00087

Download references

Acknowledgments

GM has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no 757983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Türkü Özlüm Çelik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çelik, T.Ö., Jamneshan, A., Montúfar, G., Sturmfels, B., Venturello, L. (2020). Optimal Transport to a Variety. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics