Skip to main content

Knee Injured Recovery Analysis Using Extreme Learning Machine

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

The physiotherapists analyse gait patterns to recognize normal and pathological gait movements. The gait patterns are affected by the characteristics of the individual (gender, age, weight and height) and the walking speed. In this paper, a gait analysis system to evaluate the severity of gait pathology is proposed. The Machine Learning (ML) algorithm can generate reference knee patterns for specific individuals. Gait index are used to compare the patterns generated by the ELM and patterns of the patients who suffered a surgical knee reconstruction. Two gait index are compared: The Gait Variable Score (GVS) and the Global Index (GIndex) developed by the authors. The GIndex classified 7 patients as not recovery, corroborating with the opinion of physiotherapists, while the GVS only classified 2 as not recovered. The proposed gait analysis system using the Extreme Learning Machine (ELM) and the GIndex can be useful tool for physiotherapy team in the gait pathology diagnosis and evaluation of future pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sousa, A.S.P.: Controlo Postural em Marcha Humana: Análise Multifactorial. Ph.D. thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal (2010)

    Google Scholar 

  2. Araújo, A.G.N., Andrade, L.M., De Barros, R.M.L.: System for kinematical analysis of the human gait based on videogrammetry. Fisioter e Pesqui 11(1), 3–10 (2005)

    Google Scholar 

  3. Muro-de-la-Herran, A., García-Zapirain, B., Méndez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Article  Google Scholar 

  4. Nair, B.M., Kendricks, K.D.: Deep network for analyzing gait patterns in low resolution video towards threat identification. Electron. Imaging 2016(11), 1–8 (2016)

    Article  Google Scholar 

  5. Hannink, J., Kautz, T., Pasluosta, C.F., Klucken, J., Eskofier, B.M.: Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inf. 21(1), 85–93 (2017)

    Article  Google Scholar 

  6. Yun, Y., Kim, H.-C., Shin, S.Y., Lee, J., Deshpande, A.D., Kim, C.: Statistical method for prediction of gait kinematics with Gaussian process regression. J. Biomech. 47(1), 186–192 (2014)

    Article  Google Scholar 

  7. Luu, T.P., Low, K.H., Qu, X., Lim, H.B., Hoon, K.H.: An individual-specific gait pattern prediction model based on generalized regression neural networks. Gait Posture 39(1), 443–448 (2014)

    Article  Google Scholar 

  8. Winter, D.A.: The Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  9. Abbass, S.J., Abdulrahman, G.: Kinematic analysis of human gait cycle. NUCEJ 16(2), 208–222 (2014)

    Google Scholar 

  10. Lincoln, L.S., Bamberg, S.J.M., Parsons, E., Salisbury, C., Wheeler, J.: An elastomeric insole for 3-axis ground reaction force measurement. In: Proceedings of the IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1512–1517 (2012)

    Google Scholar 

  11. Najafi, B., Khan, T., Wrobel, J.: Laboratory in a box: wearable sensors and its advantages for gait analysis. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 6507–6510 (2011)

    Google Scholar 

  12. Crea, S., Donati, M., De Rossi, S.M.M., Oddo, C.M., Vitiello, N.: A wireless flexible sensorized insole for gait analysis. Sensors 14, 1073–1093 (2014)

    Article  Google Scholar 

  13. Lind, R.F.: Wearable ground reaction force foot sensor. United States patent US 2014/0013862 A1, 16 January 2014

    Google Scholar 

  14. Ornetti, P., Maillefert, J.F., Laroche, D., Morisset, C., Dougados, M., Gossec, L.: Gait analysis as a quantifiable outcome measure in hip or knee osteoarthritis: a systematic review. Joint Bone Spine 77(5), 421–425 (2010)

    Article  Google Scholar 

  15. Rani, M.P., Arumugam, G.: Children abnormal GAIT classification using extreme learning machine. Glob. J. Comput. Sci. Technol. 10(13), 66–72 (2010)

    Google Scholar 

  16. Kong, W., Saad, M.H., Hannan, M.A., Hussain, A.: Human Gait State Classification using Artificial Neural Network, pp. 0–4 (2014)

    Google Scholar 

  17. Prakash, C., Mittal, A., Tripathi, S., Kumar, R., Mittal, N.: A framework for human recognition using a multimodel gait analysis approach. In: International Conference on Computing, Communication and Automation (ICCCA 2016), pp. 1–5 (2016)

    Google Scholar 

  18. Schwartz, M.H., Rozumalski, A.: The gait deviation index: a new comprehensive index of gait pathology. Gait Posture 28(3), 351–357 (2008)

    Article  Google Scholar 

  19. Baker, R., et al.: The gait profile score and movement analysis profile. Gait Posture 30(3), 265–269 (2009)

    Article  Google Scholar 

  20. Celletti, C., et al.: Use of the gait profile score for the evaluation of patients with joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type. Res. Dev. Disabil. 34(11), 4280–4285 (2013)

    Article  Google Scholar 

  21. Ferreira, J.P., Vieira, A., Ferreira, P., Crisóstomo, M., Coimbra, A.: Human knee joint walking pattern generation using computational intelligence techniques. Neural Comput. Appl. 30(6), 1701–1713 (2018). https://doi.org/10.1007/s00521-018-3458-5

    Article  Google Scholar 

  22. Ferreira, P.A., Ferreira, J.P., Crisóstomo, M., Coimbra, A.P.: Low cost vision system for human gait acquisition and characterization. In: IEEE International Conference on Industrial Engineering and Engineering Management, vol. 2016-Decem, pp. 291–295 (2016)

    Google Scholar 

  23. Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997)

    Article  Google Scholar 

  24. Darras, N.: Gait Analysis ADplot (2013). https://sites.google.com/site/gaitanalysisadplot/file-cabinet. Accessed 30 Dec 2018

  25. Mostayed, A., Mynuddin, M., Mazumder, G., Kim, S., Park, S.J., Korea, S.: Abnormal Gait Detection Using Discrete Fourier Transform, vol. 3, no. 2, pp. 1–8 (2010)

    Google Scholar 

  26. Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with Kinect. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 1964–1967 (2012)

    Google Scholar 

  27. Pietraszewski, B., Winiarski, S., Jaroszczuk, S.: Three-dimensional human gait trajectory – reference data for normal men. Acta Bioeng. Biomech. 14(3), 9–16 (2012)

    Google Scholar 

  28. Müller, M.: Dynamic time warping. In: Müller, M. (ed.) Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4

    Chapter  Google Scholar 

  29. Gouwanda, D.: Comparison of gait symmetry indicators in overground walking and treadmill walking using wireless gyroscopes. J. Mech. Med. Biol. 14(01), 1450006 (2014)

    Article  Google Scholar 

  30. Lathrop-Lambach, R.L., et al.: Evidence for joint moment asymmetry in healthy populations during gait. Gait Posture 40(4), 526–531 (2013)

    Article  Google Scholar 

  31. Herzog, W., Nigg, B.M., Read, L.J., Olsson, E.: Asymmetries in ground reaction force trajectorys in normal human gait. Med. Sci. Sport. Exerc. 21(1), 110–114 (1989)

    Article  Google Scholar 

  32. Bensoussan, L., Mesure, S., Viton, J.M., Delarque, A.: Kinematic and kinetic asymmetries in hemiplegic patients’ gait initiation trajectorys. J. Rehabil. Med. 38(5), 287–294 (2006)

    Article  Google Scholar 

  33. Costa, L., et al.: Application of machine learning in postural control kinematics for the diagnosis of Alzheimer’s disease. Comput. Intell. Neurosci. 2016, 1–15 (2016)

    Article  Google Scholar 

  34. Ferreira, J., et al.: Calçado instrumentado para análise da marcha. Patent PT 108143 A1. Internet, 4 January 2018. http://www.marcasepatentes.pt/files/collections/pt_PT/49/55/573/593/2016-07-11.pdf

  35. Alsheikh, M.A., Selim, A., Niyato, D., Doyle, L., Lin, S., Tan, H.-P.: Deep activity recognition models with triaxial accelerometers. In: The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence Artificial Intelligence Applied to Assistive Technologies and Smart Environments: Technical Report WS-16-01, pp. 8–13 (2015)

    Google Scholar 

  36. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  37. Castanharo, R., Da Luz, B.S., Bitar, A.C., D’Elia, C.O., Castropil, W., Duarte, M.: Males still have limb asymmetries in multijoint movement tasks more than 2 years following anterior cruciate ligament reconstruction. J. Orthop. Sci. 16(5), 531–535 (2011)

    Article  Google Scholar 

  38. Wang, Y., Chen, Y., Bhuiyan, M.Z.A., Han, Y., Zhao, S., Li, J.: Gait-based human identification using acoustic sensor and deep neural network. Futur. Gener. Comput. Syst. 86, 1228–1237 (2017)

    Article  Google Scholar 

  39. Sukhbaatar, S., Makino, T., Aihara, K., Chikayama, T.: Robust generation of dynamical patterns in human motion by a deep belief nets. J. Mach. 20, 231–246 (2011)

    Google Scholar 

  40. Zeng, W., Ma, L., Yuan, C., et al.: Artif. Intell. Rev. 52, 449 (2019). https://doi.org/10.1007/s10462-018-9645-z

    Article  Google Scholar 

  41. Han, A.B.S., Gellhorn, A.C.: Trajectories of quality of life and associated risk factors in patients with knee osteoarthritis. Am. J. Phys. Med. Rehabil. 97(9), 620–627 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The Fundação para a Ciência e Tecnologia (FCT) is gratefully acknowledged for funding this work with the grants SFRH/BD/132408/2017 and PTDC/EEI-AUT/5141/2014 (Automatic Adaptation of a Humanoid Robot Gait to Different Floor-Robot Friction Coefficients). The authors also acknowledge the COMPETE 2020 program for the financial support with the PTDC/EEI-AUT/5141/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Ferreira .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest. All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, J.P. et al. (2020). Knee Injured Recovery Analysis Using Extreme Learning Machine. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-42520-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42520-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42519-7

  • Online ISBN: 978-3-030-42520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics