Skip to main content

Bio-mechanical Analysis of Knee Stresses Based on Finite Elements Approach

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

Software tools based on finite element analysis are widely used for structural mechanical analysis and even in other areas such as medicine. This research analyzes the efforts that occur in the two most important bones that are part of the knee joint from computerized axial tomography (CT) and proposes a methodology based on finite element meshes to obtain these efforts. From the simulation of the geometry of a real knee, stress-strain curves have been developed. The results obtained from the simulation showed that the stress pattern is at a value of 10.97 Mpa in the area between the intercondylar eminence and the intercondylar notch and a unit strain of 1.05 \(\times \) 10 − 2 mm for the femur and 8, 5 \(\times \) 10 − 4 mm in warm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah, A.A., Radwan, A.Y.: Biomechanical changes accompanying unilateral and bilateral use of laterally wedged insoles with medial arch supports in patients with medial knee osteoarthritis. Clin. Biomech. 26(7), 783–789 (2011). https://doi.org/10.1016/j.clinbiomech.2011.03.013, https://linkinghub.elsevier.com/retrieve/pii/S0268003311000957

    Article  Google Scholar 

  2. Barreto Andrade, J., Villarroya-Aparicio, A., Calero Morales, S.: Biomecánica de la marcha atlética. Análisis cinemático de su desarrollo y comparación con la marcha normal. Revista Cubana de Investigaciones Biomédicas 36(2), 53–69 (2017)

    Google Scholar 

  3. Beillas, P., Lee, S.W., Tashman, S., Yang, K.H.: Sensitivity of the Tibio-femoral response to finite element modeling parameters. Comput. Methods Biomech. Biomed. Eng. 10(3), 209–221 (2007). https://doi.org/10.1080/10255840701283988

    Article  Google Scholar 

  4. Butler, A.B., Caruntu, D.I., Freeman, R.A.: Knee joint biomechanics for various ambulatory exercises using inverse dynamics in OpenSim. In: Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers, Tampa, Florida, USA, vol. 3, November 2017. https://doi.org/10.1115/IMECE2017-70988

  5. Cheung, J.T.M., Zhang, M.: A 3-dimensional finite element model of the human foot and ankle for insole design. Arch. Phys. Med. Rehabil. 86(2), 353–358 (2005). https://doi.org/10.1016/j.apmr.2004.03.031, https://linkinghub.elsevier.com/retrieve/pii/S0003999304004708

    Article  Google Scholar 

  6. Cheung, J.T.M., Zhang, M.: Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med. Eng. Phys. 30(3), 269–277 (2008). https://doi.org/10.1016/j.medengphy.2007.05.002, https://linkinghub.elsevier.com/retrieve/pii/S1350453307000884

    Article  Google Scholar 

  7. Cheung, J.T.M., Zhang, M., Leung, A.K.L., Fan, Y.B.: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study. J. Biomech. 38(5), 1045–1054 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.035, https://linkinghub.elsevier.com/retrieve/pii/S0021929004002842

    Article  Google Scholar 

  8. Farrokhi, S., Keyak, J., Powers, C.: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthr. Cartil. 19(3), 287–294 (2011). https://doi.org/10.1016/j.joca.2010.12.001, https://linkinghub.elsevier.com/retrieve/pii/S1063458410003985

    Article  Google Scholar 

  9. Guess, T., Razu, S., Jahandar, H.: Evaluation of knee ligament mechanics using computational models. J. Knee Surg. 29(02), 126–137 (2016). https://doi.org/10.1055/s-0036-1571954

    Article  Google Scholar 

  10. Hatano, G., Krzysztof, K., Sauer, P., Morita, Y.: Kinematic simulator of e-Knee robo that reproduces human knee-joint movement. In: 2019 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań, Poland, pp. 74–79. IEEE, July 2019. https://doi.org/10.1109/RoMoCo.2019.8787349, https://ieeexplore.ieee.org/document/8787349/

  11. Kakihana, W., Akai, M., Yamasaki, N., Takashima, T., Nakazawa, K.: Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. Am. J. Phys. Med. Rehabil. 83(4), 273–278 (2004)

    Article  Google Scholar 

  12. Kerrigan, D., Lelas, J.L., Goggins, J., Merriman, G.J., Kaplan, R.J., Felson, D.T.: Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 83(7), 889–893 (2002). https://doi.org/10.1053/apmr.2002.33225, https://linkinghub.elsevier.com/retrieve/pii/S000399930200000X

    Article  Google Scholar 

  13. Liu, X., Zhang, M.: Redistribution of knee stress using laterally wedged insole intervention: finite element analysis of knee-ankle-foot complex. Clin. Biomech. 28(1), 61–67 (2013). https://doi.org/10.1016/j.clinbiomech.2012.10.004, https://linkinghub.elsevier.com/retrieve/pii/S0268003312002318

    Article  Google Scholar 

  14. Madeti, B.K., Chalamalasetti, S.R., Sundara siva rao Bolla Pragada, S.K.: Biomechanics of knee joint – a review. Front. Mech. Eng. 10(2), 176–186 (2015). https://doi.org/10.1007/s11465-014-0306-x

    Article  Google Scholar 

  15. Maly, M.R., Culham, E.G., Costigan, P.A.: Static and dynamic biomechanics of foot orthoses in people with medial compartment knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 17(8), 603–610 (2002)

    Article  Google Scholar 

  16. Naghibi Beidokhti, H., Janssen, D., van de Groes, S., Hazrati, J., Van den Boogaard, T., Verdonschot, N.: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J. Biomech. 65, 1–11 (2017). https://doi.org/10.1016/j.jbiomech.2017.08.030, https://linkinghub.elsevier.com/retrieve/pii/S0021929017304529

    Article  Google Scholar 

  17. Peña, E., Calvo, B., Martínez, M., Doblaré, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006). https://doi.org/10.1016/j.jbiomech.2005.04.030, https://linkinghub.elsevier.com/retrieve/pii/S0021929005002113

    Article  Google Scholar 

  18. Ramaniraka, N., Terrier, A., Theumann, N., Siegrist, O.: Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin. Biomech. 20(4), 434–442 (2005). https://doi.org/10.1016/j.clinbiomech.2004.11.014, https://linkinghub.elsevier.com/retrieve/pii/S0268003304002888

    Article  Google Scholar 

  19. Räsänen, L.P., Mononen, M.E., Lammentausta, E., Nieminen, M.T., Jurvelin, J.S., Korhonen, R.K.: Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait. Comput. Methods Biomech. Biomed. Eng. 19(11), 1225–1240 (2016). https://doi.org/10.1080/10255842.2015.1124269

    Article  Google Scholar 

  20. Scherer, T.P., Hoechel, S., Müller-Gerbl, M., Nowakowski, A.M.: Comparison of knee joint orientation in clinically versus biomechanically aligned computed tomography coordinate system. J. Orthop. Transl. 16, 78–84 (2019). https://doi.org/10.1016/j.jot.2018.07.005, https://linkinghub.elsevier.com/retrieve/pii/S2214031X18300779

    Article  Google Scholar 

  21. Shirazi, R., Shirazi-Adl, A.: Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J. Biomech. 42(15), 2458–2465 (2009). https://doi.org/10.1016/j.jbiomech.2009.07.022, https://linkinghub.elsevier.com/retrieve/pii/S0021929009004266

    Article  Google Scholar 

  22. Valencia-Aguirre, F., Mejía-Echeverria, C., Erazo-Arteaga, V.: Desarrollo de una prótesis de rodilla para amputaciones transfemorales usando herramientas computacionales. Revista UIS Ingenierías 16(2), 23–34 (2017)

    Article  Google Scholar 

  23. Yu, J., Cheung, J.T.M., Fan, Y., Zhang, Y., Leung, A.K.L., Zhang, M.: Development of a finite element model of female foot for high-heeled shoe design. Clin. Biomech. 23, S31–S38 (2008). https://doi.org/10.1016/j.clinbiomech.2007.09.005, https://linkinghub.elsevier.com/retrieve/pii/S0268003307002082

    Article  Google Scholar 

  24. Zhang, R., Liu, H., Meng, F., Ming, A., Huang, Q.: Cylindrical inverted pendulum model for three dimensional bipedal walking. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, pp. 1010–1016. IEEE, November 2018. https://doi.org/10.1109/HUMANOIDS.2018.8624984, https://ieeexplore.ieee.org/document/8624984/

Download references

Acknowledgment

This work was financed by Universidad Técnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo V. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caiza, G., Lanas, D., Lanas-Perez, J., Mayorga, L.E., Garcia, M.V. (2020). Bio-mechanical Analysis of Knee Stresses Based on Finite Elements Approach. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1193. Springer, Cham. https://doi.org/10.1007/978-3-030-42517-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42517-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42516-6

  • Online ISBN: 978-3-030-42517-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics