Skip to main content

Similarity Solution for the Flow Behind an Exponential Shock Wave in a Rotational Axisymmetric Non-ideal Gas Under the Influence of Gravitational Field with Conductive and Radiative Heat Fluxes

  • Conference paper
  • First Online:

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 12))

Abstract

In the present paper, we investigated the propagation of exponential cylindrical shock wave in the presence of radiative as well as conductive heat fluxes under the influence of gravitational field. The medium is assumed to be non-ideal gas rotating about the axis of symmetry. The ambient medium has variable azimuthal as well as axial components of fluid velocity. It is manifested that the non-idealness parameter of the gas has decaying effect on the shock wave; however, presence of gravitational field has reverse effect on the shock strength.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  2. Carrus, P.A., Fox, P.A., Haas, F., Kopal, Z.: Astrophys. J. 113, 496 (1951)

    Article  MathSciNet  Google Scholar 

  3. Sahu, P.K.: Commun. Theor. Phys. 70(2), 197–208 (2018)

    Article  MathSciNet  Google Scholar 

  4. Sahu, P.K.: Math. Methods Appl. Sci. 42, 4734–4746 (2019)

    Article  MathSciNet  Google Scholar 

  5. Nath, G.: Ain Shams Eng. J. 3(4), 393–401 (2012)

    Article  Google Scholar 

  6. Nath, G., Sahu, P.K.: Int. J. Appl. Comput. Math. 3(4), 2785–2801 (2017)

    Article  MathSciNet  Google Scholar 

  7. Levin, V.A., Skopina, G.A.: J. Appl. Mech. Tech. Phys. 45(4), 457–460 (2004)

    Article  MathSciNet  Google Scholar 

  8. Nath, G., Sahu, P.K.: Ain Shams Eng. J. 9, 1151–1159 (2018)

    Article  Google Scholar 

  9. Sahu, P.K.: Phys. Fluids 29(8), 086102 (2017)

    Article  Google Scholar 

  10. Marshak, R.E.: Phys. Fluids 1(1), 24–29 (1958)

    Article  MathSciNet  Google Scholar 

  11. Elliott, L.A.: Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 258(1294), 287–301 (1960)

    Google Scholar 

  12. Wang, K.C.: J. Fluid Mech. 20(3), 447–455 (1964)

    Article  MathSciNet  Google Scholar 

  13. Helliwell, J.B.: J. Fluid Mech. 37(3), 497–512 (1969)

    Article  Google Scholar 

  14. NiCastro, J.R.A.J.: Phys. Fluids 13(8), 2000–2006 (1970)

    Article  Google Scholar 

  15. Ghoniem, A.F., Kamel, M.M., Berger, S., Oppenheim, A.K.: J. Fluid Mech. 117, 473–491 (1982)

    Article  Google Scholar 

  16. Anisimov, S.I., Spiner, O.M.: J. Appl. Math. Mech. 36(5), 883–887 (1972)

    Article  Google Scholar 

  17. Rao, M.P.R., Purohit, N.K.: Int. J. Eng. Sci. 14(1), 91–97 (1976)

    Article  Google Scholar 

  18. Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70(22), 3424 (1993)

    Article  Google Scholar 

  19. Roberts, P.H., Wu, C.C.: Phys. Lett. A 213(1–2), 59–64 (1996)

    Article  Google Scholar 

  20. Rao, M.R., Ramana, B.V.: J. Math. Phys. Sci. 10, 465–476 (1976)

    Google Scholar 

  21. Nath, G., Sahu, P.K.: SpringerPlus 5(1), 1509 (2016)

    Article  Google Scholar 

  22. Vishwakarma, J.P., Nath, G.: Meccanica 42(4), 331–339 (2007)

    Article  MathSciNet  Google Scholar 

  23. Gretler, W., Wehle, P.: Shock Waves 3(2), 95–104 (1993)

    Article  Google Scholar 

  24. Nath, G., Sahu, P.K., Chaurasia, S.: Chin. J. Phys. 58, 280–293 (2019)

    Article  Google Scholar 

  25. Nath, G., Sahu, P.K., Chaurasia, S.: Model. Meas. Control B 87(4), 236–243 (2018)

    Article  Google Scholar 

  26. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford (1973)

    Google Scholar 

  27. Laumbach, D.D., Probstein, R.F.: J. Fluid Mech. 40(4), 833–858 (1970)

    Article  Google Scholar 

  28. Zel’Dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Courier Corporation, Mineola (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, P.K. (2020). Similarity Solution for the Flow Behind an Exponential Shock Wave in a Rotational Axisymmetric Non-ideal Gas Under the Influence of Gravitational Field with Conductive and Radiative Heat Fluxes. In: Dawn, S., Balas, V., Esposito, A., Gope, S. (eds) Intelligent Techniques and Applications in Science and Technology. ICIMSAT 2019. Learning and Analytics in Intelligent Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-42363-6_122

Download citation

Publish with us

Policies and ethics