Skip to main content

Design Considerations for EM Pulse Fault Injection

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2019)

Abstract

Electromagnetic-fault injection (EM-FI) setups are appealing since they can be made at a low cost, achieve relatively high spatial resolutions, and avoid the need of tampering with the PCB or packaging of the target. In this paper we first sketch the importance of understanding the pulse characteristics of a pulse injection setup in order to successfully mount an attack. We then look into the different components that make up an EM-pulse setup and demonstrate their impact on the pulse shape. The different components are then assembled to form an EM-pulse injection setup. The effectiveness of the setup and how different design decisions impact the outcome of a fault injection campaign are demonstrated on a 32-bit ARM microcontroller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://store.newae.com/chipshouter-kit.

  2. 2.

    https://getquote.riscure.com/en/quote/2101068/em-fi-transient-probe.htm.

  3. 3.

    https://www.langer-emv.de/en/category/ic-side-channel-analysis/94.

  4. 4.

    https://www.fair-rite.com/products/engineering-kits/?kit=21558.

References

  1. Balasch, J., Arumi, D., Manich, S.: Design and validation of a platform for electromagnetic fault injection. In: DCIS 2017, pp. 1–6. IEEE (2017)

    Google Scholar 

  2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

    Article  Google Scholar 

  3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  4. Cui, A., Housley, R.: BADFET: defeating modern secure boot using second-order pulsed electromagnetic fault injection. In: 11th USENIX Workshop on Offensive Technologies (WOOT 2017). USENIX Association, Vancouver (2017)

    Google Scholar 

  5. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic fault injection: how faults occur. In: FDTC 2019, pp. 9–16. IEEE (2019)

    Google Scholar 

  6. Giancoli, D.C.: Physics: Principles with Applications. Pearson, Boston (2014)

    Google Scholar 

  7. Maurine, P.: Techniques for EM fault injection: equipments and experimental results. In: FDTC 2012, pp. 3–4 (2012)

    Google Scholar 

  8. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller. In: Fischer, W., Schmidt, J. (eds.) FDTC 2013, pp. 77–88. IEEE (2013)

    Google Scholar 

  9. Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic microprobe design for EM fault attack. In: Catrysse, J., Pissoort, D. (eds.) EMC 2013, pp. 949–954. IEEE Computer Society, Brugge (2013)

    Google Scholar 

  10. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evidence of a larger EM-induced fault model. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 245–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_15

    Chapter  Google Scholar 

  11. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sensor. In: Esmart 2002 (2002)

    Google Scholar 

  12. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Research Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract number C16/15/058 and through the Horizon 2020 research and innovation programme under Cathedral ERC Advanced Grant 695305. Additionally this work has been partially supported by FWO project VS06717N in collaboration with JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Beckers .

Editor information

Editors and Affiliations

Appendices

A The RLC Circuit

By applying Kirchhoff’s law to the RLC loop from Fig. 2 we obtain the following equation:

$$\begin{aligned} \frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} +\frac{I}{LC} = 0, \end{aligned}$$
(3)

Solving this equation yields three possible solutions depending on whether the circuit is critically damped (Eq. 4), underdamped (Eq. 5) or overdamped (Eqs. 7 and 8).

$$\begin{aligned} I = \frac{V_0}{L}t\exp {\left( -\frac{R}{2L}t\right) } \end{aligned}$$
(4)
$$\begin{aligned} I = \frac{V_0}{L\omega _d}\sin (\omega _dt)\exp {\left( -\frac{R}{2L}t\right) } \end{aligned}$$
(5)
$$\begin{aligned} \omega _d = \sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}} \end{aligned}$$
(6)
$$\begin{aligned} I = \frac{V_0}{(s_1 - s_2)L}\left[ \exp {\left( s_1t\right) }-\exp {\left( s_2t\right) } \right] \end{aligned}$$
(7)
$$\begin{aligned} s_1,s_2 = -\frac{R}{2L} \pm \sqrt{\left( \frac{R}{2L}\right) ^2-\frac{1}{LC}} \end{aligned}$$
(8)

The solutions to the simple series RLC circuit can be found in nearly every physics textbook, see for instance [6].

B EM-Pulse Injection Circuit - Schematic

See Fig. 14.

Fig. 14.
figure 14

EM-pulse injector schematic.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beckers, A. et al. (2020). Design Considerations for EM Pulse Fault Injection. In: Belaïd, S., Güneysu, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2019. Lecture Notes in Computer Science(), vol 11833. Springer, Cham. https://doi.org/10.1007/978-3-030-42068-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42068-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42067-3

  • Online ISBN: 978-3-030-42068-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics