Skip to main content

Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting Medical Codes

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

Word embeddings are a useful tool for extracting knowledge from the free-form text contained in electronic health records, but it has become commonplace to train such word embeddings on data that do not accurately reflect how language is used in a healthcare context. We use prediction of medical codes as an example application to compare the accuracy of word embeddings trained on health corpora to those trained on more general collections of text. It is shown that both an increase in embedding dimensionality and an increase in the volume of health-related training data improves prediction accuracy. We also present a comparison to the traditional bag-of-words feature representation, demonstrating that in many cases, this conceptually simple method for representing text results in superior accuracy to that of word embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Training was run on a 4 core Intel i7–6700K CPU @ 4.00 GHz with 64 GB of RAM.

References

  1. Beam, A.L., et al.: Clinical concept embeddings learned from massive sources of multimodal medical data. arXiv preprint arXiv:1804.01486 (2018)

  2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)

  3. Cao, Y., Huang, L., Ji, H., Chen, X., Li, J.: Bridge text and knowledge by learning multi-prototype entity mention embedding. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1623–1633 (2017)

    Google Scholar 

  4. Chen, Q., Peng, Y., Lu, Z.: BioSentVec: creating sentence embeddings for biomedical texts. In: 7th IEEE International Conference on Healthcare Informatics (2019)

    Google Scholar 

  5. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. JAMIA 24(2), 361–370 (2017). https://doi.org/10.1093/jamia/ocw112

    Article  Google Scholar 

  6. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Summits on Transl. Sci. Proc. 41–50 (2016)

    Google Scholar 

  7. MIT Critical Data: Secondary Analysis of Electronic Health Records. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43742-2_30

  8. Goldberg, Y.: Neural network methods for natural language processing: Synth. Lect. Hum. Lang. Technol. 10(1), 1–309 (2017)

    Google Scholar 

  9. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  10. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  12. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954). https://doi.org/10.1080/00437956.1954.11659520

    Article  Google Scholar 

  13. Jagannatha, A.N., Yu, H.: Bidirectional RNN for medical event detection in electronic health records. In: North American Chapter Meeting, pp. 473–482. Association for Computational Linguistics (2016)

    Google Scholar 

  14. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13(6), 395 (2012)

    Article  Google Scholar 

  15. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  16. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext.zip: compressing text classification models. arXiv preprint arXiv:1612.03651 (2016)

  17. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  18. Mencía, E.L., De Melo, G., Nam, J.: Medical concept embeddings via labeled background corpora. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 4629–4636 (2016)

    Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  21. Pakhomov, S.V., Finley, G., McEwan, R., Wang, Y., Melton, G.B.: Corpus domain effects on distributional semantic modeling of medical terms. Bioinformatics 32(23), 3635–3644 (2016)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  23. Purushotham, S., Meng, C., Che, Z., Liu, Y.: Benchmark of deep learning models on large healthcare mimic datasets. arXiv preprint arXiv:1710.08531 (2017)

  24. Roberts, K., et al.: Overview of the TREC 2017 precision medicine track. NIST Special Publication, pp. 500–324 (2017)

    Google Scholar 

  25. Shi, H., Xie, P., Hu, Z., Zhang, M., Xing, E.P.: Towards automated ICD coding using deep learning. arXiv preprint arXiv:1711.04075 (2017)

  26. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

  27. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. arXiv preprint arXiv:1601.01343 (2016)

  28. Zhang, Y., Chen, Q., Yang, Z., Lin, H., Lu, Z.: BioWordVec, improving biomedical word embeddings with subword information and MeSH. Sci. Data 6(1), 52 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithya Yogarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yogarajan, V., Gouk, H., Smith, T., Mayo, M., Pfahringer, B. (2020). Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting Medical Codes. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics