Skip to main content

Consistent Recovery of Communities from Sparse Multi-relational Networks: A Scalable Algorithm with Optimal Recovery Conditions

  • Conference paper
  • First Online:
Complex Networks XI

Abstract

Multi-layer and multiplex networks show up frequently in many recent network datasets. We consider the problem of identifying the common community membership structure of a finite sequence of networks, called multi-relational networks, which can be considered a particular case of multiplex and multi-layer networks. We propose two scalable spectral methods for identifying communities within a finite sequence of networks. We provide theoretical results to quantify the performance of the proposed methods when individual networks are generated from either the stochastic block model or the degree-corrected block model. The methods are guaranteed to recover communities consistently when either the number of networks goes to infinity arbitrarily slowly, or the expected degree of a typical node goes to infinity arbitrarily slowly, even if all the individual networks have fixed size and are sparse. This condition on the parameters of the network models mentioned above is both sufficient for consistent community recovery using our methods and also necessary to have any consistent community detection procedure. We also give some simulation results to demonstrate the efficacy of the proposed methods.

S. Chatterjee was partially supported by PSC-CUNY Cycle 50 Enhanced Research Award # 62781-00 50 while writing this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya, S., Bickel, P.J.: Community detection in networks using graph distance. arXiv preprint arXiv:1401.3915 (2014)

  2. Chen, P.Y., Hero, A.O.: Multilayer spectral graph clustering via convex layer aggregation: theory and algorithms. IEEE Trans. Signal Inf. Process. Netw. 3(3), 553–567 (2017)

    Article  Google Scholar 

  3. Dong, X., Frossard, P., Vandergheynst, P., Nefedov, N.: Clustering with multi-layer graphs: a spectral perspective. IEEE Trans. Signal Process. 60(11), 5820–5831 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices II: computing a low-rank approximation to a matrix. SIAM J. Comput. 36(1), 158–183 (2006)

    Article  MathSciNet  Google Scholar 

  5. Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs. Random Struct. Algorithms 27(2), 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  6. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based on weak coresets. In: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, pp. 11–18. ACM (2007)

    Google Scholar 

  7. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  Google Scholar 

  10. Han, Q., Xu, K., Airoldi, E.: Consistent estimation of dynamic and multi-layer block models. In: International Conference on Machine Learning, pp. 1511–1520 (2015)

    Google Scholar 

  11. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  12. Jin, J., et al.: Fast community detection by score. Ann. Stat. 43(1), 57–89 (2015)

    Article  MathSciNet  Google Scholar 

  13. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kumar, A., Rai, P., Daumé III, H.: Co-regularized spectral clustering with multiple kernels (2010)

    Google Scholar 

  15. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1+ \(\varepsilon \))-approximation algorithm for k-means clustering in any dimensions. In: Annual Symposium on Foundations of Computer Science, pp. 454–462 (2004)

    Google Scholar 

  16. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. SIAM, Philadelphia (1998)

    Google Scholar 

  17. Lei, J., Rinaldo, A., et al.: Consistency of spectral clustering in stochastic block models. Ann. Stat. 43(1), 215–237 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lu, L., Peng, X.: Spectra of edge-independent random graphs. Electron. J. Comb. 20(4), P27 (2013)

    MathSciNet  MATH  Google Scholar 

  19. von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Statist. 36(2), 555–586 (2008). https://doi.org/10.1214/009053607000000640

    Article  MathSciNet  Google Scholar 

  20. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(4), 1119–1141 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  22. Paul, S., Chen, Y.: Spectral and matrix factorization methods for consistent community detection in multi-layer networks. arXiv preprint arXiv:1704.07353 (2017)

  23. Paul, S., Chen, Y., et al.: Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electron. J. Stat. 10(2), 3807–3870 (2016)

    Article  MathSciNet  Google Scholar 

  24. Pensky, M., Zhang, T., et al.: Spectral clustering in the dynamic stochastic block model. Electron. J. Stat. 13(1), 678–709 (2019)

    Article  MathSciNet  Google Scholar 

  25. Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Statist. 39(4), 1878–1915 (2011). https://doi.org/10.1214/11-AOS887

    Article  MathSciNet  Google Scholar 

  26. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  27. Sussman, D.L., Tang, M., Fishkind, D.E., Priebe, C.E.: A consistent adjacency spectral embedding for stochastic blockmodel graphs. J. Am. Stat. Assoc. 107(499), 1119–1128 (2012)

    Article  MathSciNet  Google Scholar 

  28. Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: Ninth IEEE International Conference on Data Mining 2009. ICDM 2009, pp. 1016–1021. IEEE (2009)

    Google Scholar 

  29. Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Signal Process. 8(4), 552–562 (2014)

    Article  ADS  Google Scholar 

  30. Young, S.J., Scheinerman, E.R.: Random dot product graph models for social networks. In: International Workshop on Algorithms and Models for the Web-Graph, pp. 138–149. Springer, Heidelberg (2007)

    Google Scholar 

  31. Zhang, A.Y., Zhou, H.H., et al.: Minimax rates of community detection in stochastic block models. Ann. Stat. 44(5), 2252–2280 (2016)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X., Moore, C., Newman, M.E.: Random graph models for dynamic networks. Eur. Phys. J. B 90(10), 200 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirshendu Chatterjee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 379 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharyya, S., Chatterjee, S. (2020). Consistent Recovery of Communities from Sparse Multi-relational Networks: A Scalable Algorithm with Optimal Recovery Conditions. In: Barbosa, H., Gomez-Gardenes, J., Gonçalves, B., Mangioni, G., Menezes, R., Oliveira, M. (eds) Complex Networks XI. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-40943-2_9

Download citation

Publish with us

Policies and ethics