Skip to main content

Studies on Machining of Hard Materials

  • Chapter
  • First Online:
Machining of Hard Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 304 Accesses

Abstract

Over the years, machining industries are continuously striving to manufacture the parts at reduced cost and improved quality. This can be achieved by selecting appropriate set of tool–work materials and effective modelling and optimization of the process. Optimized grades of high-speed steel (HSS) are used to be treated as ultimate tool material till the 1930s [1]. However, American metalworking industry had shown three-time improvement in productivity with the use of same machines and manpower during the period 1939–1945.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Ettmayer, H. Kolaska, H.M. Ortner, History of hardmetals. Compr. Hard Mater. 1, 3–27 (2014). https://doi.org/10.1016/B978-0-08-096527-7.00001-5

    Article  Google Scholar 

  2. I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)

    Article  Google Scholar 

  3. Y. Huang, S.Y. Liang, Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int. J. Mach. Tools Manuf. 43(3), 307–315 (2003)

    Article  Google Scholar 

  4. Y. Huang, S.Y. Liang, Modeling of cutting forces under hard turning conditions considering tool wear effect. J. Manuf. Sci. Eng. 127(2), 262–270 (2005)

    Article  Google Scholar 

  5. P.J. Arrazola, T. Ozel, Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Int. J. Mach. Mach. Mater. 4(1), 14–25 (2008)

    Google Scholar 

  6. C. Scheffer, H. Kratz, P.S. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf 43(10), 973–985 (2003)

    Article  Google Scholar 

  7. J.S. Dureja, V.K. Gupta, V.S. Sharma, M. Dogra, M.S. Bhatti, A review of empirical modeling techniques to optimize machining parameters for hard turning applications. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(3), 389–404 (2016)

    Article  Google Scholar 

  8. F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)

    Article  Google Scholar 

  9. A. Agrawal, S. Goel, W.B. Rashid, M. Price, Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl. Soft Comput. 30, 279–286 (2015)

    Article  Google Scholar 

  10. M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 67, 265–276 (2014)

    Article  Google Scholar 

  11. K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Analysis and optimization of hard turning operation using cubic boron nitride tool. Int. J. Refract Metal Hard Mater. 45, 160–178 (2014)

    Article  Google Scholar 

  12. F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)

    Article  Google Scholar 

  13. B.P. Erdel, High-Speed Machining (Society of Manufacturing Engineers, 2003)

    Google Scholar 

  14. R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)

    Article  Google Scholar 

  15. V.P. Astakhov, Machining of hard materials–definitions and industrial applications, Machining of Hard Materials (Springer, London, 2011), pp. 1–32

    Google Scholar 

  16. C. Daniel, One-at-a-time plans. J. Am. Stat. Assoc. 68(342), 353–360 (1973)

    Article  Google Scholar 

  17. M. Friedman, L.J. Savage, Planning experiments seeking maxima. Tech. Stat. Anal. (1947), pp. 365–372

    Google Scholar 

  18. Z. Li, B. Chen, H. Wu, X. Ye, B. Zhang, A design of experiment aided stochastic parameterization method for modeling aquifer NAPL contamination. Environ. Model Softw. 101, 183–193 (2018)

    Article  Google Scholar 

  19. G.E. Box, P.Y. Liu, Statistics as a catalyst to learning by scientific method part I—an example. J. Qual. Technol. 31(1), 1–15 (1999)

    Article  Google Scholar 

  20. V. Czitrom, One-factor-at-a-time versus designed experiments. Am. Stat. 53(2), 126–131 (1999)

    Google Scholar 

  21. C.J. Wu, M.S. Hamada, Experiments: Planning, Analysis, and Optimization, vol. 552 (Wiley & Sons, 2011)

    Google Scholar 

  22. D.D. Frey, H. Wang, Adaptive one-factor-at-a-time experimentation and expected value of improvement. Technometrics 48(3), 418–431 (2006)

    Article  MathSciNet  Google Scholar 

  23. G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust. J. Mech. Eng. 14(3), 182–198 (2016)

    Article  Google Scholar 

  24. G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling in squeeze casting process-present state and future perspectives. Adv. Autom. Eng. 4(1), 1–9 (2015)

    Google Scholar 

  25. R.T. Coelho, E.G. Ng, M.A. Elbestawi, Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. J. Mach. Tools Manuf. 47(2), 263–272 (2007)

    Article  Google Scholar 

  26. J.L. Li, L.L. Jing, M. Chen, An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J. Mater. Process. Technol. 209(9), 4515–4520 (2009)

    Article  Google Scholar 

  27. J. Lorentzon, N. Järvstråt, Modelling tool wear in cemented-carbide machining alloy 718. Int. J. Mach. Tools Manuf. 48(10), 1072–1080 (2008)

    Article  Google Scholar 

  28. H.J. Hu, W.J. Huang, Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int. J. Adv. Manuf. Technol. 69(1–4), 31–39 (2013)

    Article  Google Scholar 

  29. D.M. Kim, V. Bajpai, B.H. Kim, H.W. Park, Finite element modeling of hard turning process via a micro-textured tool. Int. J. Adv. Manuf. Technol. 78(9–12), 1393–1405 (2015)

    Article  Google Scholar 

  30. C.S. Kumar, S.K. Patel, Application of surface modification techniques during hard turning: present work and future prospects. Int. J. Refract Metal Hard Mater. 76, 112–127 (2018)

    Article  Google Scholar 

  31. C.S. Kumar, S.K. Patel, Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surf. Coat. Technol. 334, 509–525 (2018)

    Article  Google Scholar 

  32. L. Ma, C. Li, J. Chen, W. Li, Y. Tan, C. Wang, Y. Zhou, Prediction model and simulation of cutting force in turning hard-brittle materials. Int. J. Adv. Manuf. Technol. 91(1–4), 165–174 (2017)

    Article  Google Scholar 

  33. C. Shet, X. Deng, Residual stresses and strains in orthogonal metal cutting. Int. J. Mach. Tools Manuf. 43(6), 573–587 (2003)

    Article  Google Scholar 

  34. K. Li, X.L. Gao, J.W. Sutherland, Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J. Mater. Process. Technol. 127(3), 309–324 (2002)

    Article  Google Scholar 

  35. F. Akbar, P.T. Mativenga, M.A. Sheikh, An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int. J. Adv. Manuf. Technol. 46(5–8), 491–507 (2010)

    Article  Google Scholar 

  36. A. Qasim, S. Nisar, A. Shah, M.S. Khalid, M.A. Sheikh, Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 59, 36–51 (2015)

    Article  Google Scholar 

  37. M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arab. J. Sci. Eng. (2018), pp. 1–8

    Google Scholar 

  38. S. Benlahmidi, H. Aouici, F. Boutaghane, A. Khellaf, B. Fnides, M.A. Yallese, Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int. J. Adv. Manuf. Technol. 89(1–4), 803–820 (2017)

    Article  Google Scholar 

  39. P. Kumar, S. Chauhan, C. Pruncu, M. Gupta, D. Pimenov, M. Mia, H. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation. Materials 12(1), 177 (2019)

    Article  Google Scholar 

  40. G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley & Sons, 1987)

    Google Scholar 

  41. E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of milling force coefficients from orthogonal cutting data. J. Manuf. Sci. Eng. 118(2), 216–224 (1996)

    Article  Google Scholar 

  42. A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J. Mater. Process. Technol. 180(1–3), 253–262 (2006)

    Article  Google Scholar 

  43. J.A. Arsecularatne, L.C. Zhang, C. Montross, P. Mathew, On machining of hardened AISI D2 steel with PCBN tools. J. Mater. Process. Technol. 171(2), 244–252 (2006)

    Article  Google Scholar 

  44. Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124(3), 274–283 (2002)

    Article  Google Scholar 

  45. T.G. Dawson, T.R. Kurfess, Machining hardened steel with ceramic-coated and uncoated CBN cutting tools. Soc. Manuf. Eng. 156, 1–7 (2002)

    Google Scholar 

  46. V.G. Navas, I. Ferreres, J.A. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. J. Mater. Process. Technol. 195(1–3), 186–194 (2008)

    Article  Google Scholar 

  47. M.A. Kamely, M.Y. Noordin, V.C. Venkatesh, The effect of multiple pass cutting on surface integrity when hard turning of AISI D2 cold work tool steel. Int. J. Precis. Technol. 1(1), 97–105 (2007)

    Article  Google Scholar 

  48. H.A. Kishawy, M.A. Elbestawi, Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 215(6), 755–767 (2001)

    Article  Google Scholar 

  49. M. Liu, J.I. Takagi, A. Tsukuda, Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J. Mater. Process. Technol. 150(3), 234–241 (2004)

    Article  Google Scholar 

  50. S.K. Khrais, Y.J. Lin, Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear 262(1–2), 64–69 (2007)

    Article  Google Scholar 

  51. C.K. Toh, Tool life and tool wear during high-speed rough milling using alternative cutter path strategies. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(9), 1295–1304 (2003)

    Article  Google Scholar 

  52. T. Ozel, T.K. Hsu, E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25(3–4), 262–269 (2005)

    Article  Google Scholar 

  53. J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, Effect of chamfer angle on wear of PCBN cutting tool. Int. J. Mach. Tools Manuf. 43(3), 301–305 (2003)

    Article  Google Scholar 

  54. R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning. Int. J. Adv. Manuf. Technol. 58(9–12), 933–940 (2012)

    Article  Google Scholar 

  55. J. Bhaskaran, M. Murugan, N. Balashanmugam, M. Chellamalai, Monitoring of hard turning using acoustic emission signal. J. Mech. Sci. Technol. 26(2), 609–615 (2012)

    Article  Google Scholar 

  56. K. Aslantas, I. Ucun, A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear 274, 442–451 (2012)

    Article  Google Scholar 

  57. W.B. Rashid, S. Goel, X. Luo, J.M. Ritchie, An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 338–342 (2013)

    Article  Google Scholar 

  58. A.K. Sahoo, B. Sahoo, Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 45(8), 2153–2165 (2012)

    Article  Google Scholar 

  59. R. Ferreira, J. Řehoř, C.H. Lauro, D. Carou, J.P. Davim, Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2413–2420 (2016)

    Article  Google Scholar 

  60. G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li, J. Zhao, Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement 125, 99–108 (2018)

    Article  Google Scholar 

  61. I. Lazoglu, K. Buyukhatipoglu, H. Kratz, F. Klocke, Forces and temperatures in hard turning. Mach. Sci. Technol. 10(2), 157–179 (2006)

    Article  Google Scholar 

  62. A. Srithar, K. Palanikumar, B. Durgaprasad, Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated carbide insert. Procedia Eng. 97, 72–77 (2014)

    Article  Google Scholar 

  63. F. Puh, T. Šegota, Z. Jurković, Optimization of hard turning process parameters with PCBN tool based on the Taguchi method. Tehnički vjesnik 19(2), 415–419 (2012)

    Google Scholar 

  64. R. Suresh, S. Basavarajappa, G.L. Samuel, Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 45(7), 1872–1884 (2012)

    Article  Google Scholar 

  65. H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 45(3), 344–353 (2012)

    Article  Google Scholar 

  66. H. Aouici, M.A. Yallese, A. Belbah, M.F. Ameur, M. Elbah, Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana 38(3), 429–445 (2013)

    Article  Google Scholar 

  67. Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), 1671–1681 (2013)

    Article  Google Scholar 

  68. M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J.F. Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46(9), 3041–3056 (2013)

    Article  Google Scholar 

  69. S. Saini, I.S. Ahuja, V.S. Sharma, Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int. J. Adv. Manuf. Technol. 65(5–8), 667–678 (2013)

    Article  Google Scholar 

  70. E. Yucel, M. Gunay, Modelling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 227(10), 2280–2290 (2013)

    Article  Google Scholar 

  71. H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)

    Article  Google Scholar 

  72. M.Y. Noordin, D. Kurniawan, Y.C. Tang, K. Muniswaran, Feasibility of mild hard turning of stainless steel using coated carbide tool. Int. J. Adv. Manuf. Technol. 60(9–12), 853–863 (2012)

    Article  Google Scholar 

  73. J.S. Dureja, R. Singh, M.S. Bhatti, Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Prod. Manuf. Res. 2(1), 767–783 (2014)

    Google Scholar 

  74. I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int. J. Adv. Manuf. Technol. 77(5–8), 1387–1399 (2015)

    Article  Google Scholar 

  75. S.R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J. Mech. Sci. Technol. 29(10), 4329–4340 (2015)

    Article  Google Scholar 

  76. F. Jafarian, H. Amirabadi, J. Sadri, Experimental measurement and optimization of tensile residual stress in turning process of Inconel718 superalloy. Measurement 63, 1–10 (2015)

    Article  Google Scholar 

  77. H. Aouici, B. Fnides, M. Elbah, S. Benlahmidi, H. Bensouilah, M. Yallese, Surface roughness evaluation of various cutting materials in hard turning of AISI H11. Int. J. Ind. Eng. Comput. 7(2), 339–352 (2016)

    Google Scholar 

  78. P. Revel, N. Jouini, G. Thoquenne, F. Lefebvre, High precision hard turning of AISI 52100 bearing steel. Prec. Eng. 43, 24–33 (2016)

    Article  Google Scholar 

  79. M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)

    Article  Google Scholar 

  80. H. Zahia, Y. Athmane, B. Lakhdar, M. Tarek, On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. Int. J. Ind. Eng. Comput. 6(2), 267–284 (2015)

    Google Scholar 

  81. L. Tang, Z. Cheng, J. Huang, C. Gao, W. Chang, Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int. J. Adv. Manuf. Technol. 76(1–4), 691–703 (2015)

    Article  Google Scholar 

  82. M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)

    Article  Google Scholar 

  83. A. Khellaf, H. Aouici, S. Smaiah, S. Boutabba, M.A. Yallese, M. Elbah, Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography. Int. J. Adv. Manuf. Technol. 89(1–4), 333–354 (2017)

    Article  Google Scholar 

  84. A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation. Proc. Integr. Optimization Sustain. 1(4), 237–249 (2017)

    Article  Google Scholar 

  85. O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, T. Mabrouki, Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. Int. J. Adv. Manuf. Technol. 89(5–8), 1915–1934 (2017)

    Article  Google Scholar 

  86. M. Mia, N.R. Dhar, Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43(3), 1125–1136 (2018)

    Article  Google Scholar 

  87. A. Zerti, M.A. Yallese, O. Zerti, M. Nouioua, R. Khettabi, Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2019). https://doi.org/10.1177/0954406218820557

    Article  Google Scholar 

  88. M. Kaladhar, Evaluation of hard coating materials performance on machinability issues and material removal rate during turning operations. Measurement 135, 493–502 (2019)

    Article  Google Scholar 

  89. J. Jena, A. Panda, A.K. Behera, P.C. Jena, S.R. Das, D. Dhupal, Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, in Innovation in Materials Science and Engineering (Springer, Singapore, 2019), pp. 151–160

    Google Scholar 

  90. A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)

    Article  Google Scholar 

  91. M.S. Phadke, Quality Enginuring using Robust Design (Prentice Hall, New Jersey, 1989)

    Google Scholar 

  92. G. Taguchi, Y. Wu, Introduction to off-line quality control, Central Japan quality control association. Avail. Am. Suppl. Inst., vol. 32100 (1980)

    Google Scholar 

  93. K.L. Tsui, An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions 24(5), 44–57 (1992)

    Article  Google Scholar 

  94. P.J. Ross, P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design (No. TS156 R12) (McGraw-Hill, New York, 1988)

    Google Scholar 

  95. R. Unal, E.B. Dean, Taguchi Approach To Design Optimization for Quality and Cost: An Overview

    Google Scholar 

  96. W.M. Carlyle, D.C. Montgomery, G.C. Runger, Optimization problems and methods in quality control and improvement. J. Qual. Technol. 32(1), 1–17 (2000)

    Article  Google Scholar 

  97. G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. Royal Stat. Soc. Ser. B (Methodol.) 13(1), 1–38 (1951)

    MathSciNet  MATH  Google Scholar 

  98. D.C. Montgomery, Design and Analysis of Experiments, vol. 52 (Wiley & Sons, 2001), pp. 218–286

    Google Scholar 

  99. G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Modell. 40(15–16), 6869–6888 (2016)

    Article  MATH  Google Scholar 

  100. L.A. Trinca, S.G. Gilmour, Difference variance dispersion graphs for comparing response surface designs with applications in food technology. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 48(4), 441–455 (1999)

    Article  MATH  Google Scholar 

  101. R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  102. R.V. Rao, Single-and multi-objective optimization of casting processes using Jaya algorithm and its variants, in Jaya: An Advanced Optimization Algorithm and its Engineering Applications (Springer, Cham, 2019), pp. 273–289

    Google Scholar 

  103. G.R. Chate, G.C.M. Patel, A.S. Deshpande, M.B. Parappagoudar, Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232(5), 579–598 (2018)

    Article  Google Scholar 

  104. G.R. Chate, G.C.M. Patel, S.B. Bhushan, M.B. Parappagoudar, A.S. Deshpande, Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J. Braz. Soc. Mech. Sci. Eng. 41(4), 183 (2019)

    Article  Google Scholar 

  105. G.C.M. Patel, P. Krishna, P.R. Vundavilli, M.B. Parappagoudar, Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization. Arch. Foundry Eng. 16(3), 172–186 (2016)

    Article  Google Scholar 

  106. G.C.M. Patel, P. Krishna, M.B. Parappagoudar, P.R. Vundavilli, Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int. J. Swarm Intell. Res. (IJSIR) 7(1), 55–74 (2016)

    Article  Google Scholar 

  107. K. Bouacha, M.A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Metals Hard Mater. 28(3), 349–361 (2010)

    Article  Google Scholar 

  108. G. Bartarya, S.K. Choudhury, Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1, 651–656 (2012)

    Article  Google Scholar 

  109. V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)

    Article  Google Scholar 

  110. P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 147(2), 181–184 (2004)

    Article  Google Scholar 

  111. V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Process. 24(12), 1373–1382 (2009)

    Article  Google Scholar 

  112. J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater. Sci. Eng. A 394(1–2), 238–248 (2005)

    Article  Google Scholar 

  113. A. Madariaga, J.A. Esnaola, E. Fernandez, P.J. Arrazola, A. Garay, F. Morel, Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 71(9–12), 1587–1598 (2014)

    Article  Google Scholar 

  114. M. Dogra, V.S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning-a review. J. Eng. Sci. Technol. Rev. 4(1), 10–13 (2011)

    Article  Google Scholar 

  115. W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Annals 33(2), 417–427 (1984)

    Article  Google Scholar 

  116. T. Ozel, Y. Karpat, A. Srivastava, Hard turning with variable micro-geometry PcBN tools. CIRP Ann. 57(1), 73–76 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunath Patel G. C. .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel G. C., M., Chate, G.R., Parappagoudar, M.B., Gupta, K. (2020). Studies on Machining of Hard Materials. In: Machining of Hard Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-40102-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40102-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40101-6

  • Online ISBN: 978-3-030-40102-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics