Skip to main content

Manganite Pervoskite Nanoparticles: Synthesis, Heating Mechanism, Toxicity, and Self-regulated Hyperthermia

  • Chapter
  • First Online:
Book cover Magnetic Nanoheterostructures

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 537 Accesses

Abstract

In the present chapter, we have reviewed the possibility of LaMnO3 and Sr-doped perovskite manganites LaMnO3 (LMO) nanomaterials in therapeutics and diagnostics with a special attention for hyperthermia applications. In addition, we have also emphasized on the importance of synthesis, heating mechanism, concept of self-regulated hyperthermia, and toxicity issue of this important class of nanomaterials for their safer use in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andra W, Nowak H (eds) (2007) Magnetism in medicine. Eiley-VCH Verlag GmbH

    Google Scholar 

  • AOTrauma (2001) Swiss society for biomaterials, tissue and cell engineering society. Eur Cells Mater

    Google Scholar 

  • Babincová M, Altanerova V, Altaner C, Bergemann C, Babinec P (2008) In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans Nanobiosci 7:15–19

    Article  Google Scholar 

  • Bahadur D, Prasad NK, Rathinasamy K, Panda D (2007) TC-Tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. Wiley-Interscience

    Google Scholar 

  • Balamurugan S, Melba K (2015) Zn(1-x)CuxO (0.02 ≤ x ≤ 0.1) nanomaterials prepared by ball milling, citrate sol gel, and molten salt flux methods. J Nanosci Nanotechnol 15:4632–4640

    Google Scholar 

  • Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812

    Article  CAS  Google Scholar 

  • Berkova Z, Jirak D, Zacharovova K, Lukes I, Kotkova Z, Kotek J, Kacenka M, Kaman O, Rehor I, Hajek M (2013) Gadolinium-and manganite-based contrast agents with fluorescent probes for both magnetic resonance and fluorescence imaging of pancreatic islets: a comparative study. ChemMedChem 8:614–621

    Article  CAS  Google Scholar 

  • Bhayani K, Kale S, Arora S, Rajagopal R, Mamgain H, Kaul-Ghanekar R, Kundaliya DC, Kulkarni S, Pasricha R, Dhole S (2007) Protein and polymer immobilized La0. 7Sr0. 3MnO3 nanoparticles for possible biomedical applications. Nanotechnology 18:345101

    Google Scholar 

  • Bhayani K, Rajwade J, Paknikar K (2012) Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response. Nanotechnology 24:015102

    Article  CAS  Google Scholar 

  • Brusentsov NA, Brusentsova TN, Filinova EY (2007) Principles of magnetohydrodynamic thermochemotherapy of malignant tumors (a review). Pharm Chem J 41:455–460

    Article  CAS  Google Scholar 

  • Bubnovskaya L, Belous A, Solopan S, Kovelskaya A, Bovkun L, Podoltsev A, Kondtratenko I, Osinsky S (2014) Magnetic fluid hyperthermia of rodent tumors using manganese perovskite nanoparticles. J Nanopart 2014:1–9

    Article  CAS  Google Scholar 

  • Bulte JW (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193:314–325

    Article  Google Scholar 

  • Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34:106–135

    Article  CAS  Google Scholar 

  • Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  Google Scholar 

  • Daengsakul S, Mongkolkachit C, Thomas C, Siri S, Thomas I, Amornkitbamrung V, Maensiri S (2009a) A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Appl Phys A 96:691–699

    Google Scholar 

  • Daengsakul S, Thomas C, Thomas I, Mongkolkachit C, Siri S, Amornkitbamrung V, Maensiri S (2009b) Magnetic and cytotoxicity properties of La(1-x)Sr(x)MnO(3) (0. Nanoscale Res Lett 4:839–845

    Article  CAS  Google Scholar 

  • Daengsakul S, Thomas C, Thomas I, Mongkolkachit C, Siri S, Amornkitbamrung V, Maensiri S (2009b) Magnetic and cytotoxicity properties of La(1-x)Sr(x)MnO(3) (0 </= x </= 0.5) nanoparticles prepared by a simple thermal hydro-decomposition. Nanoscale Res Lett 4(8):839–845

    Google Scholar 

  • Das N, Mondal P, Bhattacharya D (2006) Particle-size dependence of orbital order-disorder transition in La Mn O 3. Phys Rev B 74:014410

    Article  CAS  Google Scholar 

  • Ebrahimi M (2016) On the temperature control in self-controlling hyperthermia therapy. J Magn Magn Mater 416:134–140

    Article  CAS  Google Scholar 

  • Epherre R, Duguet E, Mornet S, Pollert E, Louguet S, Lecommandoux S, Schatz C, Goglio G (2011a) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. J Mater Chem 21:4393–4401

    Article  CAS  Google Scholar 

  • Epherre R, Pepin C, Penin N, Duguet E, Mornet S, Pollert E, Goglio G (2011b) Evidence of non-stoichiometry effects in nanometric manganite perovskites: influence on the magnetic ordering temperature. J Mater Chem 21:14990

    Article  CAS  Google Scholar 

  • Falk MH, Issels RD (n.d.) Hyperthermia in oncology. Int J Hyperthermia 17:1–18

    Google Scholar 

  • Feldhoff A, Arnold M, Martynczuk J, Gesing TM, Wang H (2008) The sol–gel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions. Solid State Sci 10:689–701

    Article  CAS  Google Scholar 

  • Ferreira L (2009) Nanoparticles as tools to study and control stem cells. J Cell Biochem 108:746–752

    Article  CAS  Google Scholar 

  • Fodale V, Pierobon M, Liotta L, Petricoin E (2011) Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J (Sudbury, Mass) 17:89

    Google Scholar 

  • Getzlaff M (2007) Fundamentals of magnetism. Springer Science & Business Media

    Google Scholar 

  • Ghosh B, Siruguri V, Raychaudhuri AK, Chatterji T (2014) Effect of size reduction on the structural and magnetic order in LaMnO3+δ (δ ≈ 0.03) nanocrystals: a neutron diffraction study. J Phys Condens Matter 26:025603

    Google Scholar 

  • Giri A, Makhal A, Ghosh B, Raychaudhuri A, Pal SK (2010) Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nanoscale 2:2704–2709

    Article  CAS  Google Scholar 

  • Gogoi M, Sarma HD, Bahadur D, Banerjee R (2014) Biphasic magnetic nanoparticles–nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine 9:955–970

    Article  CAS  Google Scholar 

  • Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R (2017) Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol 9:555–565

    Article  CAS  Google Scholar 

  • Goya G, Grazu V, Ibarra M (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Haghniaz R, Bhayani KR, Umrani RD, Paknikar KM (2013) Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv 3:18489–18497

    Article  CAS  Google Scholar 

  • Haghniaz R, Umrani RD, Paknikar KM (2016) Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3 nanoparticles: in vivo studies. Int J Nanomed 11:1779

    Google Scholar 

  • Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    Article  CAS  Google Scholar 

  • Heijkoop ST, Franckena M, Thomeer MG, Boere IA, Van Montfort C, Van Doorn HC (2012) Neoadjuvant chemotherapy followed by radiotherapy and concurrent hyperthermia in patients with advanced-stage cervical cancer: a retrospective study. Int J Hyperth 28:554–561

    Article  CAS  Google Scholar 

  • Hilger I, Kießling A, Romanus E, Hiergeist R, Hergt R, Andrä W, Roskos M, Linss W, Weber P, Weitschies W, Kaiser WA (2004) Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation. Nanotechnology. 15:1027–1032

    Article  CAS  Google Scholar 

  • Hilger I, Hergt R, Kaiser WA (2005) Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 293:314–319

    Article  CAS  Google Scholar 

  • Hong R, Li J, Qu J, Chen L, Li H (2009) Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. Chem Eng J 150:572–580

    Article  CAS  Google Scholar 

  • Huang D-M, Chung T-H, Hung Y, Lu F, Wu S-H, Mou C-Y, Yao M, Chen Y-C (2008) Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 231:208–215

    Article  CAS  Google Scholar 

  • Huang J, Wang J, Su X, Hao W, Wang T, Xia Y, Da G, Fan Y (2012) Biocompatibility of nanoporous TiO2 coating on NiTi alloy prepared via dealloying method. J Nanomater 2012:8

    Google Scholar 

  • Ito A, Kamihira M (2011) Tissue engineering using magnetite nanoparticles. In: Progress in molecular biology and translational science. Elsevier, pp 355–395

    Google Scholar 

  • Jadhav S, Nikam D, Khot V, Thorat N, Phadatare M, Ningthoujam R, Salunkhe A, Pawar S (2013) Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J Chem 37:3121–3130

    Article  CAS  Google Scholar 

  • Jadhav S, Nikam D, Khot V, Mali S, Hong C, Pawar S (2015) PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application. Mater Charact 102:209–220

    Article  CAS  Google Scholar 

  • Javed Y, Akhtar K, Anwar H, Jamil Y (2017) MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. J Nanopart Res 19:366

    Article  CAS  Google Scholar 

  • Jin Y, Jia C, Huang S-W, O’donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41

    Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225:118–126

    Article  CAS  Google Scholar 

  • Kačenka M, Kaman O, Kotek J, Falteisek L, Černý J, Jirák D, Herynek V, Zacharovová K, Berková Z, Jendelová P (2011) Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. J Mater Chem 21:157–164

    Article  Google Scholar 

  • Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M, Wagh UV, Kulkarni SD, Ogale SB (2006) Cerium doping and stoichiometry control for biomedical use of La0. 7Sr0. 3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomed Nanotechnol Biol Med 2:217–221

    Google Scholar 

  • Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knížek K, Maryško M, Kašpar P, Klementová M, Grünwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology 20:275610

    Article  CAS  Google Scholar 

  • Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026

    Google Scholar 

  • Khaing Oo MK, Yang Y, Hu Y, Gomez M, Du H, Wang H (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS nano 6:1939–1947

    Google Scholar 

  • Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133:2955–2961

    Article  CAS  Google Scholar 

  • Koning GA, Eggermont AM, Lindner LH, ten Hagen TL (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27:1750–1754

    Article  CAS  Google Scholar 

  • Kulkarni VM, Bodas D, Paknikar KM (2015) Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 5:60254–60263

    Article  CAS  Google Scholar 

  • Kulkarni VM, Bodas D, Dhoble D, Ghormade V, Paknikar K (2016) Radio-frequency triggered heating and drug release using doxorubicin-loaded LSMO nanoparticles for bimodal treatment of breast cancer. Colloids Surf B Biointerfaces 145:878–890

    Article  CAS  Google Scholar 

  • Lassa MS, Luques CG, Albornoz C, Leyva AG, Roig LV, Vazquez PG (2015) Magnetic nanoparticles of La0. 78Sr0. 22MnO3, coated with SiO2: preparation and cytotoxicity in human cell cultures. Procedia Mater Sci 8:358–365

    Google Scholar 

  • Lee M-Y, Song M-K, Kim J-S, Seo J-H (2014) Synthesis of single-phase gd-doped ceria nanopowders by radio frequency thermal plasma treatment. J Am Ceram Soc 97:1379–1382

    Google Scholar 

  • Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F (2008) The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 29:3306–3316

    Article  CAS  Google Scholar 

  • Lin MM, Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305

    Article  Google Scholar 

  • Liu Y, Du J, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H (2013) Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat Nanotechnol 8:187

    Article  CAS  Google Scholar 

  • Louguet S, Rousseau B, Epherre R, Guidolin N, Goglio G, Mornet S, Duguet E, Lecommandoux S, Schatz C (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem 3:1408–1417

    Article  CAS  Google Scholar 

  • Mahendiran R, Tiwary SK, Raychaudhuri AK, Ramakrishnan TV, Mahesh R, Rangavittal N, Rao CNR (1996) Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO 3 systems. Phys Rev B 53:3348–3358

    Article  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf, B 75:300–309

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011a) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  Google Scholar 

  • Makni J, Riahi K, Ayadi F, Nachbaur V, Cheikhrouhou-Koubaa W, Koubaa M, Hamayun MA, Hlil EK, Cheikhrouhou A (2018) Evaluation of La0.7Sr0.3Mn1-xBxO3 (B = Mo, Ti) nanoparticles synthesized via GNP method for self-controlled hyperthermia. J Alloys Compd 746:626–637

    Google Scholar 

  • Markovich V, Jung G, Fita I, Mogilyansky D, Wu X, Wisniewski A, Puzniak R, Titelman L, Vradman L, Herskowitz M, Gorodetsky G (2010) Magnetotransport properties of ferromagnetic LaMnO3 + δ nano-sized crystals. J Magn Magn Mater 322:1311–1314

    Article  CAS  Google Scholar 

  • McBride K, Cook J, Gray S, Felton S, Stella L, Poulidi D (2016) Evaluation of La 1−x Sr x MnO 3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. CrystEngComm 18:407–416

    Google Scholar 

  • Melnikov OV, Gorbenko OY, M̌arkelova MN, Kaul AR, Atsarkin VA, Demidov VV, Soto C, Roy EJ, Odintsov BM (2009) Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. J Biomed Mater Res Part A 91A:1048–1055

    Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161

    Article  CAS  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  • Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31:1789–1795

    Article  CAS  Google Scholar 

  • Mulier S, Claes J-P, Dierieck V, Amiel J-O, Pahaut J-P, Marcelis L, Bastin F, Vanderbeeken D, Finet C, Cran S (2012) Survival benefit of adding hyperthermic intraperitoneal chemotherapy (HIPEC) at the different time-points of treatment of ovarian cancer: review of evidence. Curr Pharm Des 18:3793–3803

    Article  CAS  Google Scholar 

  • Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, Mediano A (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4:3954–3962

    Article  CAS  Google Scholar 

  • Pandalai SG (2002) Recent research developments in materials science and engineering, vol 1, pt 1. Transworld Res Netw

    Google Scholar 

  • Prasad N, Rathinasamy K, Panda D, Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-Mn x Fe 2–x O 3 synthesized by a single step process. J Mater Chem 17:5042–5051

    Article  CAS  Google Scholar 

  • Prasad N, Rathinasamy K, Panda D, Bahadur D (2008) TC‐tuned biocompatible suspension of La0. 73Sr0. 27MnO3 for magnetic hyperthermia. J Biomed Mater Res Part B: Appl Biomater Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 85:409–416

    Google Scholar 

  • Rajagopal R, Mona J, Kale S, Bala T, Pasricha R, Poddar P, Sastry M, Prasad B, Kundaliya DC, Ogale S (2006) La 0.7 Sr 0.3 Mn O 3 nanoparticles coated with fatty amine. Appl Phys Lett 89:023107

    Google Scholar 

  • Rao CNR, Raveau B (1998) Colossal magnetoresistance, charge ordering and related properties of manganese oxides. World Scientific, Singapore

    Book  Google Scholar 

  • Rao CNR, Mahesh R, Raychaudhuri AK, Mahendiran R (1998) Giant magnetoresistance, charge ordering and other novel properties of perovskite manganates. J Phys Chem Solids 59:487–501

    Article  CAS  Google Scholar 

  • Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. Nanostruct Nov Ther 1–36

    Google Scholar 

  • Schlachter EK, Widmer HR, Bregy A, Lönnfors-Weitzel T, Vajtai I, Corazza N, Bernau VJ, Weitzel T, Mordasini P, Slotboom J (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomed 6:1793

    CAS  Google Scholar 

  • Sen A, Capitano ML, Spernyak JA, Schueckler JT, Thomas S, Singh AK, Evans SS, Hylander BL, Repasky EA (2011) Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Can Res 71:3872–3880

    Article  CAS  Google Scholar 

  • Sharma R, Chen CJ (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11:671–689

    Article  CAS  Google Scholar 

  • Shinde KP, Deshpande NG, Eom T, Lee YP, Pawar SH (2010) Solution-combustion synthesis of La0. 65Sr0. 35MnO3 and the magnetocaloric properties. Mater Sci Eng B 167:202–205

    Google Scholar 

  • Shinoda K, Nakajima T, Tsuchiya T (2014) Fabrication of La1−xSrxMnO3 thin films by chemical solution deposition for high-temperature resistive materials. J Ceram Soc Jpn 122(6):415–420

    Article  CAS  Google Scholar 

  • Shlyakhtin OA, Leontiev VG, Oh Y-J, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16:N35–N39

    Article  CAS  Google Scholar 

  • Singh S, Armstrong A, Robke J, Waggoner S, Debernardo R (2014) Hyperthermic intra-thoracic chemotherapy (HITeC) for the management of recurrent ovarian cancer involving the pleural cavity. Gynecol Oncol Case Rep 9:24

    Article  CAS  Google Scholar 

  • Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging

    Google Scholar 

  • Soleymani M, Edrissi M, Alizadeh AM (2017) Tailoring La 1−x Sr x MnO 3 (0.25 ≤ x ≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy: an in vivo study. J Mater Chem B 5:4705–4712

    Google Scholar 

  • Song CW, Lokshina A, Rhee JG, Patten M, Levitt SH (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 9–16

    Google Scholar 

  • Sun J, Song Y, Wang Z, Gao P, Chen X, Xu Y, Liang J, Xu H (2012) Benefits of hyperthermic intraperitoneal chemotherapy for patients with serosal invasion in gastric cancer: a meta-analysis of the randomized controlled trials. BMC Cancer 12:526

    Article  CAS  Google Scholar 

  • Tsai S-M, Mesina M, Goshia T, Chiu M-H, Young J, Sibal A, Chin W-C (2019) Perovskite nanoparticles toxicity study on airway epithelial cells. Nanoscale Res Lett 14:14

    Article  CAS  Google Scholar 

  • ur Rashid A, Manzoor S (2016) Optimizing magnetic anisotropy of La1 − xSrxMnO3 nanoparticles for hyperthermia applications. J Magn Magn Mater 420:232–240

    Google Scholar 

  • ur Rashid A, Ahmed A, Ahmad S, Shaheen S, Manzoor S (2013) Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications. J Magn Magn Mater 347:39–44

    Google Scholar 

  • Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1 − xSrxMnO3. Phys Rev B 51:14103–14109

    Article  CAS  Google Scholar 

  • Uskokovic V, Kosak A, Drofenik M, Drofenik M (2006) Preparation of silica-coated lanthanum-strontium manganite particles with designable curie point, for application in hyperthermia treatments. Int J Appl Ceram Technol 3:134–143

    Article  CAS  Google Scholar 

  • Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315–320

    Article  CAS  Google Scholar 

  • Veverka P, Kaman O, Kačenka M, Herynek V, Veverka M, Šantavá E, Lukeš I, Jirák Z (2015) Magnetic La 1–x Sr x MnO 3 nanoparticles as contrast agents for MRI: the parameters affecting 1 H transverse relaxation. J Nanopart Res 17:33

    Article  CAS  Google Scholar 

  • Wang J, Gao Y, Hou Y, Zhao F, Pu F, Liu X, Wu Z, Fan Y (2012) Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J Nanomater 2012:1

    Google Scholar 

  • Weissleder RA, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173

    Article  CAS  Google Scholar 

  • Westermann AM, Jones EL, Schem BC, van der Steen-Banasik EM, Koper P, Mella O, Uitterhoeve AL, de Wit R, van der Velden J, Burger C (2005) First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with Stage IIB, III, and IVA cervical carcinoma. Cancer 104:763–770

    Article  CAS  Google Scholar 

  • Zener C (1951) Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403–405

    Google Scholar 

  • Zhang K, Holloway T, Pradhan J, Bahoura M, Bah R, Rakhimov R, Pradhan A, Prabakaran R, Ramesh G (2010) Synthesis and magnetic characterizations of La1 − x Sr x MnO3 nanoparticles for biomedical applications. J Nanosci Nanotechnol 10:5520–5526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, N., Javed, Y., Ali, K., Ahmad, M.R., Akhtar, K., Sharma, S.K. (2020). Manganite Pervoskite Nanoparticles: Synthesis, Heating Mechanism, Toxicity, and Self-regulated Hyperthermia. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_12

Download citation

Publish with us

Policies and ethics