Skip to main content

Towards Capturing Sonographic Experience: Cognition-Inspired Ultrasound Video Saliency Prediction

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

For visual tasks like ultrasound (US) scanning, experts direct their gaze towards regions of task-relevant information. Therefore, learning to predict the gaze of sonographers on US videos captures the spatio-temporal patterns that are important for US scanning. The spatial distribution of gaze points on video frames can be represented through heat maps termed saliency maps. Here, we propose a temporally bidirectional model for video saliency prediction (BDS-Net), drawing inspiration from modern theories of human cognition. The model consists of a convolutional neural network (CNN) encoder followed by a bidirectional gated-recurrent-unit recurrent convolutional network (GRU-RCN) decoder. The temporal bidirectionality mimics human cognition, which simultaneously reacts to past and predicts future sensory inputs. We train the BDS-Net alongside spatial and temporally one-directional comparative models on the task of predicting saliency in videos of US abdominal circumference plane detection. The BDS-Net outperforms the comparative models on four out of five saliency metrics. We present a qualitative analysis on representative examples to explain the model’s superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our implementation, for numerical stability, we compute \(log(\hat{s}^t_i)\) with a log-softmax function instead of computing the softmax and logarithm sequentially.

  2. 2.

    https://github.com/cvzoya/saliency.

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. In: NIPS - Deep Learning Symposium (2016)

    Google Scholar 

  2. Bak, C., Kocak, A., Erdem, E., Erdem, A.: Spatio-temporal saliency networks for dynamic saliency prediction. IEEE Trans. Multimed. 20(7), 1688–1698 (2018)

    Article  Google Scholar 

  3. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. In: ICLR (2016)

    Google Scholar 

  4. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imag. 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  5. Bazzani, L., Larochelle, H., Torresani, L.: Recurrent mixture density network for spatiotemporal visual attention. In: ICLR (2017)

    Google Scholar 

  6. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 740–757 (2019)

    Article  Google Scholar 

  7. Bylinskii, Z., et al.: MIT Saliency Benchmark. http://saliency.mit.edu/

  8. Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: SonoEyeNet: standardized fetal ultrasound plane detection informed by eye tracking. In: ISBI (2018)

    Google Scholar 

  9. Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: Multi-task sonoeyenet: detection of fetal standardized planes assisted by generated sonographer attention maps. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 871–879. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_98

    Chapter  Google Scholar 

  10. Chaabouni, S., Benois-pineau, J., Hadar, O.: Deep Learning for Saliency Prediction in Natural Video. arXiv:1604.08010 (2016)

  11. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP (2014)

    Google Scholar 

  12. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS (2014)

    Google Scholar 

  13. Clark, A.: Whatever next? predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36(03), 181–204 (2013)

    Article  Google Scholar 

  14. Droste, R., et al.: Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention. Accepted at IPMI (2019)

    Google Scholar 

  15. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: NIPS (2016)

    Google Scholar 

  16. Gao, Y., Alison Noble, J.: Detection and characterization of the fetal heartbeat in free-hand ultrasound sweeps with weakly-supervised two-streams convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 305–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_35

    Chapter  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Huang, W., Bridge, C.P., Noble, J.A., Zisserman, A.: Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 341–349. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_39

    Chapter  Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  20. Jetley, S., Murray, N., Vig, E.: End-to-end saliency mapping via probability distribution prediction. In: CVPR (2016)

    Google Scholar 

  21. Keskar, N.S., Socher, R.: Improving Generalization Performance by Switching from Adam to SGD. arXiv:1712.07628 (2017)

  22. Sharma, H., Droste, R., Chatelain, P., Drukker, L., Papageorghiou, A., Noble, J.A.: Spatio-temporal partitioning and description of full-length routine fetal anomaly ultrasound scans. Accepted at IEEE ISBI 2019 (2019)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  25. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.-M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 744–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_44

    Chapter  Google Scholar 

  26. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing Ingredient for Fast Stylization. arxiv:1607.08022 (2016)

  27. Wang, W., Shen, J., Guo, F., Cheng, M.M., Borji, A.: Revisiting video saliency: a large-scale benchmark and a new model. In: CVPR (2018)

    Google Scholar 

  28. Wu, Y., He, K.: Group normalization. In: ECCV (2018)

    Google Scholar 

  29. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent Neural Network Regularization. arXiv:1409.2329 (2014)

Download references

Acknowledgements

This work is supported by the ERC (ERC-ADG-2015 694581, project PULSE) and the EPSRC (EP/R013853/1 and EP/M013774/1). AP is funded by the NIHR Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Droste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Droste, R., Cai, Y., Sharma, H., Chatelain, P., Papageorghiou, A.T., Noble, J.A. (2020). Towards Capturing Sonographic Experience: Cognition-Inspired Ultrasound Video Saliency Prediction. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics