Skip to main content

A Check of Water Drop Impact Effects on Surface Soil Saturated Hydraulic Conductivity

  • Conference paper
  • First Online:
Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production (MID-TERM AIIA 2019)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 67))

Abstract

The post-tillage dynamics of the surface soil saturated hydraulic conductivity, Ks, was studied at the Masse experimental station (central Italy, silty-clay-loam soil). A sequence of experiments was performed by rainfall simulation on two replicated micro-plots (width 1 m, length 0.92 m, slope 16%) established on bare soil. Each high-intensity rainfall simulation was preceded by a low-intensity wetting phase. The soil water content, w, was measured before wetting and both before and after simulation. Runoff was measured at 5 min intervals. The infiltration rate was calculated as the difference between rainfall intensity and runoff rate. Finally, Ks was assumed to be equal to the infiltration rate under the nearly steady conditions reached at the end of each simulation. The pre-wetting w values were quite low and they increased during wetting, reaching at the end of this phase a value that remained more or less stable during the simulation phase. Consequently, all changes of Ks were expected to be specifically attributable to mechanical modifications of the porous medium due to the raindrop impact. For each individual experiment, Ks decreased with cumulative rainfall energy, E, according to an exponential or power relationship, denoting that raindrop impact had a noticeable effect on Ks when it occurred on an initially tilled soil. The developed experimental methodology appears usable to determine raindrop impact effects on the surface soil Ks in highly controlled field conditions and it could be applied to develop Ks versus E relationships usable for numerically simulating surface soil hydrological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assouline, S., & Mualem, Y. (2006). Runoff from heterogeneous small bare catchments during soil surface sealing. Water Resource Research., 42, W12405.

    Google Scholar 

  • Bagarello, V., Baiamonte, G., & Caia, C. (2019). Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin. Geoderma, 340, 133–145.

    Article  Google Scholar 

  • Bhattacharyya, R., Prakash, V., Kundu, S., & Gupta, H. S. (2006). Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Research, 86, 129–140.

    Article  Google Scholar 

  • Carter, M. R., & Kunelius, H. T. (1986). Comparison of tillage and direct drilling for Italian ryegrass on the properties of a fine sandy loam soil. Canadian Journal of Soil Science, 66, 197–207.

    Article  Google Scholar 

  • Chahinian, N., Moussa, R., Andrieux, P., & Voltz, M. (2006). Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots. Journal of Hydrology, 326, 135–152.

    Article  Google Scholar 

  • Coutadeur, C., Coquet, Y., & Roger-Estrade, J. (2002). Variation of hydraulic conductivity in a tilled soil. European Journal of Soil Science, 53, 619–628.

    Article  Google Scholar 

  • Haruna, S. I., Anderson, S. H., Nkongolo, N. V., & Zaibon, S. (2018). Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere, 28(3), 430–442.

    Article  Google Scholar 

  • Heard, J. R., Kladivko, E. J., & Mannering, J. V. (1988). Soil macroporosity, hydraulic conductivity and air permeability of silty soils under long-term conservation tillage in Indiana. Soil Tillage Research, 11, 1–18.

    Article  Google Scholar 

  • Joschko, M., Sochtig, W., & Larink, O. (1992). Functional relationship between earthworm burrows and soil water movement in column experiments. Soil Biology & Biochemistry, 24, 1545–1547.

    Article  Google Scholar 

  • King, B. A., & Bjomeberg, D. L. (2012). Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers. Transactions of the ASABE, 55(2), 505–512.

    Article  Google Scholar 

  • Mualem, Y., Assouline, S., & Rohdenburg, H. (1990). Rainfall induced soil seal (A) A critical review of observations and models. CATENA, 17(2), 185–203.

    Article  Google Scholar 

  • Ndiaye, B., Esteves, M., Vandervaere, J. P., Lapetite, J. M., & Vauclin, M. (2005). Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil. Journal of Hydrology, 307, 294–311.

    Article  Google Scholar 

  • Todisco, F., Vergni, L., Mannocchi, F., & Bomba, C. (2012). Calibration of the soil loss measurement method at the Masse experimental station. CATENA, 91, 4–9.

    Article  Google Scholar 

  • Vergni, L., Todisco, F., & Vinci, A. (2018). Setup and calibration of the rainfall simulator of the Masse experimental station for soil erosion studies. CATENA, 167, 448–455.

    Article  Google Scholar 

  • Vinci, A., Todisco, F., & Mannocchi, F. (2016). Calibration of manual measurements of rills using Terrestrial Laser Scanning. CATENA, 140, 164–168.

    Article  Google Scholar 

  • White, I., Sully, M. J., & Melville, M. D. (1989). Use and hydrological robustness of time-to-incipient-ponding. Soil Science Society of America Journal, 53, 1343–1346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Todisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Todisco, F., Bagarello, V., Vergni, L., Vinci, A. (2020). A Check of Water Drop Impact Effects on Surface Soil Saturated Hydraulic Conductivity. In: Coppola, A., Di Renzo, G., Altieri, G., D'Antonio, P. (eds) Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019. Lecture Notes in Civil Engineering, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-39299-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39299-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39298-7

  • Online ISBN: 978-3-030-39299-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics