Skip to main content

Many-Parameter Quaternion Fourier Transforms for Intelligent OFDM Telecommunication System

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

Abstract

In this paper, we aim to investigate the superiority and practicability of many-parameter quaternion Fourier transforms (MPQFT) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication system (Intelligent-OFDM-TCS), based on MPFT. New system uses inverse MPQFT for modulation at the transmitter and direct MPQFT for demodulation at the receiver. The purpose of employing the MPFTs is to improve the PHY-LS of wireless transmissions against to the wide-band anti-jamming communication. Each MPQFT depends on finite set of independent parameters (angles), which could be changed independently one from another. When parameters are changed, multi-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. We implement the following performances as bit error rate (BER), symbol error rate (SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-MPWT-OFDM-TCS. Simulation results show that the proposed Intelligent OFDM-TCS have better performances than the conventional OFDM system based on DFT against eavesdropping

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gupta, M.K., Tiwari, S.: Performance evaluation of conventional and wavelet based OFDM system. Int. J. Electron. Commun. 67(4), 348–354 (2013)

    Article  Google Scholar 

  2. Patchala, S., Sailaja, M.: Analysis of filter bank multi-carrier system for 5G communications. Int. J. Wirel. Microw. Technol. (IJWMT) 9(4), 39–50 (2019)

    Article  Google Scholar 

  3. Kaur, H., Kumar, M., Sharma, A.K., Singh, H.P.: Performance analysis of different Wavelet families over fading environments for mobile WiMax system. Int. J. Future Gener. Commun. Netw. 8, 87–98 (2015)

    Article  Google Scholar 

  4. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45, 2397–2417 (1999)

    Article  MathSciNet  Google Scholar 

  5. Michailow, N., Mendes, L., Matthe, M., Festag, I., Fettweis, A., Robust, G.: WHT-GFDM for the next generation of wireless networks. IEEE Commun. Lett. 19, 106–109 (2015)

    Article  Google Scholar 

  6. Manhas, P., Soni, M.K.: Comparison of OFDM system in terms of BER using different transform and channel coding. Int. J. Eng. Manuf. 1, 28–34 (2016)

    Google Scholar 

  7. Hamilton, W.R.: Elements of Quaternions, p. 242. Chelsea Pub. Com., New York (1969)

    Google Scholar 

  8. Ward, J.P.: Quaternions and Cayley Numbers: Algebra and Applications, p. 218. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  9. Labunets, V.G.: Quaternion number–theoretical transform. In: Devices and Methods of Experimental Investigations in Automation, pp. 28–33. Dnepropetrovsk State University Press, Dnepropetrovsk (1981). (In Russian)

    Google Scholar 

  10. Sommen, F.: A product and an exponential function in hypercomplex function theory. Appl. Anal. 12, 13–26 (1981)

    Article  MathSciNet  Google Scholar 

  11. Sommen, F.: Hypercomplex Fourier and Laplace transforms I. Ill. J. Math. 26(2), 332–352 (1982)

    Article  MathSciNet  Google Scholar 

  12. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. International Series of Monographs on Chemistry, p. 610. Oxford University Press, Oxford (1987)

    Google Scholar 

  13. Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77(1), 119–124 (1969)

    Google Scholar 

  14. Rundblad–Labunets, E., Labunets, V., Astola, J., Egiazarian, K.: Fast fractional Fourier–Clifford transforms. In: Second International Workshop on Transforms and Filter Banks. TICSP Series, Tampere, Finland, no. 5, pp. 376–405 (1999)

    Google Scholar 

  15. Sangwine, S.J., Ell, T.A.: The discrete Fourier transform of a colour image. In: Blackledge, J.M., Turner, M.J. (eds.) Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430–441 (1998)

    Google Scholar 

  16. Labunets-Rundblad, E.: Fast Fourier-Clifford transforms design and application in invariant recognition. Ph.D. thesis, p. 26. Tampere University Technology, Tampere, Finland (2000)

    Google Scholar 

  17. Rundblad, E., Labunets, V., Egiazarian, K., Astola, J.: Fast invariant recognition of color images based on Fourier–Clifford number theoretical transform. In: EUROPORTO, Conference on Image and Signal Processing for Remote Sensing YI, pp. 284–292 (2000)

    Google Scholar 

  18. Labunets, V.G., Kohk, E.V., Ostheimer, E.: Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images. Comput. Opt. 42(1), 84–96 (2018)

    Article  Google Scholar 

  19. Brackx, F., De Schepper, N., Sommen, F.: The 2-D Clifford-Fourier transform. J. Math. Imaging Vis. 26(1), 5–18 (2006)

    Article  MathSciNet  Google Scholar 

  20. Brackx, F., Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)

    Article  Google Scholar 

  21. De Bie, H., De Schepper, N.: The fractional Clifford-Fourier transform. Complex Anal. Oper. Theory 6(5), 1047–1067 (2012)

    Article  MathSciNet  Google Scholar 

  22. De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)

    Article  MathSciNet  Google Scholar 

  23. Condon, E.U.: Immersion of the Fourier transform in a continuous group of functional transforms. Proc. Nat. Acad. Sci. 23, 158–164 (1937)

    Article  Google Scholar 

  24. Kober, H.: Wurzeln aus der Hankel- und Fourier und anderen stetigen Transformationen. Quart. J. Math. Oxford Ser. 10, 45–49 (1939)

    Article  Google Scholar 

  25. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part 1. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  Google Scholar 

  26. Namias, V.: The fractional order Fourier transform and its application to quatum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  27. McBride, A.C., Kerr, F.H.: On Namias’ fractional Fourier transforms. IMA J. Appl. Math. 39, 159–265 (1987)

    Article  MathSciNet  Google Scholar 

  28. Ozaktas, H.M., Mendlovic, D.: Fourier transform of fractional order and their optical interpretation. Opt. Commun. 110, 163–169 (1993)

    Article  Google Scholar 

  29. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform, p. 532. Wiley, Chichester (2001)

    Google Scholar 

  30. Carracedo, C.M., Alix, M.S.: The Theory of Fractional Powers of Operators, p. 366. Elsevier, London - New York (2001)

    MATH  Google Scholar 

  31. Kumar, R., Singh, K., Khanna, R.: Satellite image compression using fractional Fourier transform. Int. J. Comput. Appl. 50(3), 20–25 (2012)

    Google Scholar 

  32. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 657–671 (1949)

    MathSciNet  MATH  Google Scholar 

  33. Wyner, A.D.: The wiretap channel. Bell Labs Tech. J. 54(8), 1355–1387 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 19-29-09022-мк and by the Ural State Forest Engineering’s Center of Excellence in «Quantum and Classical Information Technologies for Remote Sensing Systemsю.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy G. Labunets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Labunets, V.G., Ostheimer, E. (2020). Many-Parameter Quaternion Fourier Transforms for Intelligent OFDM Telecommunication System. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_8

Download citation

Publish with us

Policies and ethics