Skip to main content

Identification of Contamination Potential Source (ICPS): A Topological Approach for the Optimal Recognition of Sensitive Nodes in a Water Distribution Network

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The correct management of urban water networks have to be supported by monitoring and estimating water quality. The infrastructure maintenance status and the possibility of a prevention plan availability influence the potential risk of contamination. In this context, the Contamination Source Identification (CSI) models aim to identify the contamination source starting from the concentration values referring to the nodes. This paper proposes a methodology based on Dynamics of Network Pollution (DNP). The DNP approach, linked to the pollution matrix and the incidence matrix, allows a topological analysis on the network structure in order to identify the nodes and paths most sensitive to contamination, namely those that favor a more critical diffusion of the introduced contaminant. The procedure is proposed with the aim of optimally identifying the potential contamination points. By simulating the contamination of a synthetic network, using a bottom-up approach, an optimized procedure is defined to trace back to the chosen node as the most probable contamination source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Jasser, A.O.: Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect. Water Res. 41(2), 387–396 (2007). https://doi.org/10.1016/j.watres.2006.08.032

    Article  Google Scholar 

  2. Adedoja, O.S., Hamam, Y., Khalaf, B., Sadiku, R.: Towards development of an optimization model to identify contamination source in a water distribution network. Water 10(5), 579–606 (2018). https://doi.org/10.3390/w10050579

    Article  Google Scholar 

  3. Borowski, E.J., Borwein, J.M.: The HarperCollins Dictionary of Mathematics. HarperCollins, New York (USA) (1991)

    Google Scholar 

  4. Dawsey, W.J., Minsker, B.S., VanBlaricum, V.L.: Bayesian belief networks to integrate monitoring evidence of water distribution system contamination. J. Water Resour. Plann. Manage. 132(4), 234–241 (2006). https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(234)

    Article  Google Scholar 

  5. Di Cristo, C.D., Leopardi, A.: Pollution source identification of accidental contamination in water distribution networks. J. Water Resour. Plann. Manage. 134(2), 197–202 (2008). https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(197)

    Article  Google Scholar 

  6. Digiano, F.A., Zhang, W.: Pipe section reactor to evaluate chlorine-wall reaction. J.-Am. Water Works Assoc. 7(1), 74–85 (2005)

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  8. Di Nardo, A., Di Natale, M.: A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng. Optim. 43(2), 193–211 (2011). https://doi.org/10.1080/03052151003789858

    Article  Google Scholar 

  9. Guan, J., Aral, M.M., Maslia, M.L., Grayman, W.M.: Identification of contaminant sources in water distribution systems using simulation-optimization method: case study. J. Water Resour. Plann. Manage. 132(4), 252–262 (2006). https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(252)

    Article  Google Scholar 

  10. Harary, F.: Graph Theory. Reading. Addison-Wesley, Boston (USA) (1994)

    Google Scholar 

  11. Kang, D., Lansey, K.: Revisiting optimal water-distribution system design: issues and a heuristic hierarchical approach. J. Water Resour. Plann. Manage. 138(3), 208–217 (2012). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000165

    Article  Google Scholar 

  12. Kessler, A., Ostfeld, A., Sinai, G.: Detecting accidental contaminations in municipal water networks. J. Water Resour. Plann. Manage. 124(4), 192–198 (1998). https://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(192)

    Article  Google Scholar 

  13. Kim, M., Choi, C.Y., Gerba, C.P.: Source tracking of microbial intrusion in water systems using artificial neural networks. Water Res. 42(4–5), 1308–1314 (2008). https://doi.org/10.1016/j.watres.2007.09.032

    Article  Google Scholar 

  14. Kim, H., Kim, S., Koo, J.: Modelling chlorine decay in a pilot scale water distribution system subjected to transient. In: Civil and Environmental Engineering, Pusan National University (Korea) and Environmental Engineering, University of Seoul (2015) https://doi.org/10.1016/j.proeng.2015.08.89

  15. Kim, S.H., Aral, M.M., Eun, Y., Park, J.J., Park, C.: Impact of sensor measurement error on sensor positioning in water quality monitoring networks. Stoch. Environ. Res. Risk Assess. 31(3), 743–756 (2017). https://doi.org/10.1007/s00477-016-1210-1

    Article  Google Scholar 

  16. Liu, L., Zechman, E.M., Mahinthakumar, G., Ranji Ranjithan, S.: Identifying contaminant sources for water distribution systems using a hybrid method. Civil Eng. Environ. Syst. 29(2), 123–136 (2012). https://doi.org/10.1080/10286608.2012.663360

    Article  Google Scholar 

  17. Maiolo, M., Carini, M., Capano, G., Pantusa, D., Iusi, M.: Trends in metering potable water. Water Pract. Technol. 14(1.1), 1–9 (2019). https://doi.org/10.2166/wpt.2018.120

    Article  Google Scholar 

  18. Maiolo, M., Pantusa, D.: A methodological proposal for the evaluation of potable water use risk. Water Pract. Technol. 10(1), 152–163 (2015). https://doi.org/10.2166/wpt.2015.017

    Article  Google Scholar 

  19. Maiolo, M., Pantusa, D.: Combined reuse of wastewater and desalination for the management of water systems in conditions of scarcity. Water Ecol. 4(72), 116–126 (2017). https://doi.org/10.23968/2305-3488.2017.22.4.116-126

    Article  Google Scholar 

  20. Maiolo, M., Pantusa, D.: A proposal for multiple reuse of urban wastewater. J. Water Reuse Desalin. 8(4), 468–478 (2018a). https://doi.org/10.2166/wrd.2017.144

    Article  Google Scholar 

  21. Maiolo, M., Pantusa, D.: Infrastructure Vulnerability Index of drinking water systems to terrorist attacks. Cogent Eng. 5(1), 1456710 (2018b). https://doi.org/10.1080/23311916.2018.1456710

    Article  Google Scholar 

  22. Mostafa, N.G., Minerva, E., Halim, H.A.: Simulation of Chlorine Decay in Water Distribution Networks. Public Works Department, Faculty of Engineering, Cairo (Egypt), Using EPANET. Case Study - Sanitary and Environmental Engineering Division (2013)

    Google Scholar 

  23. Nagatani, T., et al.: Residual chlorine decay simulation in water distribution system. In: The International Symposium on Water Supply Technology, Yokohama (Japan) (2008)

    Google Scholar 

  24. Preis, A., Ostfeld, A.: Genetic algorithm for contaminant source characterization using imperfect sensors. Civil Eng. Environ. Syst. 25(1), 29–39 (2008). https://doi.org/10.1080/10286600701695471

    Article  Google Scholar 

  25. Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban areas: a survey. J. Netw. Comput. Appl. 60, 192–219 (2016)

    Article  Google Scholar 

  26. Rossman, L.A., Clark, R.M., Grayman, W.M.: Modeling chlorine residuals in drinking water distribution systems. J. Environ. Eng. 120(4), 803–820 (1994)

    Article  Google Scholar 

  27. Rossman, L.A.: EPANET 2: Users Manual (2000)

    Google Scholar 

  28. Tao, T., Huang, H.D., Xin, K.L., Liu, S.M.: Identification of contamination source in water distribution network based on consumer complaints. J. Central S. Univ. Technol. 19, 1600–1609 (2012)

    Article  Google Scholar 

Download references

Aknowledgments

This work is partially supported by the Italian Regional Project (POR CALABRIA FESR 2014–2020): “origAMI, Original Advanced Metering Infrastructure” CUP J48C17000170006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Maiolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capano, G., Bonora, M.A., Carini, M., Maiolo, M. (2020). Identification of Contamination Potential Source (ICPS): A Topological Approach for the Optimal Recognition of Sensitive Nodes in a Water Distribution Network. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics