Skip to main content

Space Geometry Effect over the Internet as a Physical-Logical Interdependent Network

  • Conference paper
  • First Online:
  • 506 Accesses

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

In this article we study the Internet’s robustness under physical node failures, given that the physical layer is built over spaces with geometry/shape restrictions. This is of special interest for countries prone to natural catastrophes, and long and narrow geographies such as Chile and Japan. We model the Internet as an interdependent network composed of the Internet’s physical layer (Internet backbone) and he Internet’s logical layer (Autonomous System level network) coupled. Here, the robustness is tested by measuring the amount of functional nodes on the logical network after randomly removing physical nodes. In this work, we tested six different spatially constrained network models to generate the Internet’s physical layer (Yao graphs, geometric preferential attachment, Erdős-Rényi, n-nearest neighbours, Gabriel graphs, and Modified relative neighbourhood model), and three different geometries with width to lengths ratios going from a square geometry to a Chile-like space geometry. Additionally, we study the relation between the amount of physical edges and the Internet’s robustness. Our findings suggest that both: the edge addition strategy (i.e. the physical network model used) and the amount of physical edges play an important role on the Internet’s robustness. Our results also suggest that Internet based interdependent systems whose robustness is affected by the space geometry (geometry-sensitive) can become more robust by randomly adding few edges. Furthermore, these interdependent systems can become geometry-insensitive after the edge addition, meaning that the robustness of the interdependent system is no longer affected by the space geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adler, C.O., Dagli, C.H.: Study of the use of a genetic algorithm to improve networked system-of-systems resilience. Proc. Comput. Sci. 36, 49–56 (2014)

    Article  Google Scholar 

  2. Autonomous system (1930). https://tools.ietf.org/html/rfc1930. Accessed 29 Sep 2019

  3. Bachmann, I., Bustos-Jiménez, J.: Improving the Chilean Internet robustness: increase the interdependencies or change the shape of the country? In: International Conference on Complex Networks and Their Applications, pp. 646–657. Springer, Berlin (2017)

    Google Scholar 

  4. Berezin, Y., Bashan, A., Danziger, M.M., Li, D., Havlin, S.: Localized attacks on spatially embedded networks with dependencies. Sci. Rep. 5, 8934 (2015)

    Article  ADS  Google Scholar 

  5. Border gateway protocol (2006). https://tools.ietf.org/html/rfc4271. Accessed 29 Sep 2019

  6. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025–1028 (2010)

    Article  ADS  Google Scholar 

  7. Cai, Y., Li, Y., Cao, Y., Li, W., Zeng, X.: Modeling and impact analysis of interdependent characteristics on cascading failures in smart grids. Int. J. Electr. Power Energy Syst. 89, 106–114 (2017)

    Article  Google Scholar 

  8. Carlson, J.M., Doyle, J.: Complexity and robustness. Proc. Natl. Acad. Sci. 99(suppl. 1), 2538–2545 (2002)

    Article  ADS  Google Scholar 

  9. Chattopadhyay, S., Dai, H.: Towards optimal link patterns for robustness of interdependent networks against cascading failures. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, Piscataway (2015)

    Google Scholar 

  10. Chen, Z., Wu, J., Xia, Y., Zhang, X.: Robustness of interdependent power grids and communication networks: a complex network perspective. IEEE Trans. Circ. Syst. Express Briefs 65(1), 115–119 (2017)

    Article  ADS  Google Scholar 

  11. Cowie, J.H., Ogielski, A.T., Premore, B., Smith, E.A., Underwood, T.: Impact of the 2003 blackouts on internet communications. Preliminary Report, Renesys Corporation (updated March 1, 2004) (2003)

    Google Scholar 

  12. Danziger, M.M., Bashan, A., Berezin, Y., Havlin, S. (2013). Interdependent spatially embedded networks: dynamics at percolation threshold. In: 2013 International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 619–625. IEEE, Piscataway (2013)

    Google Scholar 

  13. Dong, G., Tian, L., Du, R., Fu, M., Stanley, H.E.: Analysis of percolation behaviors of clustered networks with partial support-dependence relations. Phys. A: Stat. Mech. Appl. 394, 370–378 (2014)

    Article  MathSciNet  Google Scholar 

  14. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Discrete Comput. Geom.17(3), 263–282 (1997)

    Article  MathSciNet  Google Scholar 

  15. Erdős, P.,Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    Google Scholar 

  16. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.H.: Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In: International Colloquium on Automata, Languages, and Programming, pp. 110–122. Springer, Berlin (2002)

    Chapter  Google Scholar 

  17. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM, New York (1999)

    Article  Google Scholar 

  18. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Math. 3(2), 187–205 (2006)

    Article  MathSciNet  Google Scholar 

  19. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Zool. 18(3), 259–278 (1969)

    Article  Google Scholar 

  20. Han, Y., Li, Z., Guo, C., Tang, Y.: Improved percolation theory incorporating power flow analysis to model cascading failures in cyber-physical power system. In: Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5. IEEE, Piscataway (2016)

    Google Scholar 

  21. Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83(6), 065101 (2011)

    Article  ADS  Google Scholar 

  22. Huang, Z., Wang, C., Nayak, A., Stojmenovic, I.: Small cluster in cyber physical systems: Network topology, interdependence and cascading failures. IEEE Trans. Parallel Distrib. Syst. 26(8), 2340–2351 (2014)

    Article  Google Scholar 

  23. Kazawa, Y., Tsugawa, S.: On the effectiveness of link addition for improving robustness of multiplex networks against layer node-based attack. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 697–700. IEEE, Piscataway (2017)

    Google Scholar 

  24. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math. 2(4), 431–523 (2005)

    Article  MathSciNet  Google Scholar 

  25. Matsui, Y., Kojima, H., Tsuchiya, T.: Modeling the interaction of power line and scada networks. In: 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, pp. 261–262. IEEE, Piscataway (2014)

    Google Scholar 

  26. Nguyen, D.T., Shen, Y., Thai, M.T.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)

    Article  Google Scholar 

  27. Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: the case of communication networks and the power grid. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 2164–2169. IEEE, Piscataway (2013)

    Google Scholar 

  28. Qiu, Y.: The effect of clustering-based and degree-based weighting on robustness in symmetrically coupled heterogeneous interdependent networks. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3984–3988. IEEE, Piscataway (2013)

    Google Scholar 

  29. Radicchi, F.: Percolation in real interdependent networks. Nat. Phys. 11(7), 597–602 (2015)

    Article  Google Scholar 

  30. Ramiro, V., Piquer, J., Barros, T., Sepúlveda, P.: The Chilean Internet: did it survive the earthquake? WIT Trans. State-of-the-art in Sci. Eng. 58, 133–151 (2012)

    Article  Google Scholar 

  31. Reis, S.D., Hu, Y., Babino, A., Andrade Jr, J.S., Canals, S., Sigman, M., Makse, H.A.: Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10(10), 762–767 (2014)

    Article  Google Scholar 

  32. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1–2), 63–79 (2008)

    Article  Google Scholar 

  33. Schneider, C.M., Yazdani, N., Araújo, N.A., Havlin, S., Herrmann, H.J.: Towards designing robust coupled networks. Sci. Rep. 3, 1969 (2013)

    Article  ADS  Google Scholar 

  34. Wang, X., Kooij, R.E., Van Mieghem, P.: Modeling region-based interconnection for interdependent networks. Phys. Rev. E 94(4), 042315 (2016)

    Article  ADS  Google Scholar 

  35. Watanabe, S., Kabashima,Y.: Cavity-based robustness analysis of interdependent networks: influences of intranetwork and internetwork degree-degree correlations. Phys. Rev. E 89(1), 012808 (2014)

    Article  ADS  Google Scholar 

  36. Willinger, W., Roughan, M.: Internet topology research redux. ACM SIGCOMM eBook: Recent Advances in Networking. CiteSeer (2013)

    Google Scholar 

  37. Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the internet: a source of enormous confusion and great potential. Notices Am. Math. Soc. 56(5), 586–599 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comp. 11(4), 721–736 (1982)

    Article  MathSciNet  Google Scholar 

  39. Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86(6), 066103 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was partially funded by CONICYT Doctorado Nacional 21170165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Bachmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bachmann, I., Sanhueza, F., Bustos-Jiménez, J. (2020). Space Geometry Effect over the Internet as a Physical-Logical Interdependent Network. In: Masuda, N., Goh, KI., Jia, T., Yamanoi, J., Sayama, H. (eds) Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science. NetSci-X 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-38965-9_15

Download citation

Publish with us

Policies and ethics