Skip to main content

Complex Networks Antifragility under Sustained Edge Attack-Repair Mechanisms

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Resilience is an important property of real-world complex networks with many applications in technological, biological, and social systems. While many natural systems are particularly resilient, some are antifragile, namely, they become stronger when being subjected to attacks, volatility, or errors. In this paper, we consider an edge-attack and local edge-repair response mechanism over several synthetic and real-world datasets, on which we quantify both antifragility (as the dynamics of the largest connected component) and the cost incurred by edge repairs. Our findings show that (1) random repairs generate a stronger antifragile response, thus confirming that antifragility manifests itself in the context of random, rather than deterministic events; and (2) antifragile behavior is fostered by strongly clustered topologies (e.g., real-world networks and the synthetic Watts–Strogatz model with degree distribution). Our results represent a first step towards designing highly resilient networks and developing new methods for thwarting the antifragile response of harmful and hostile systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available at http://networkrepository.com/power.php.

  2. 2.

    Available at http://networkrepository.com/tech-routers-rf.php.

  3. 3.

    Available at https://www.cs.cmu.edu/~enron/.

  4. 4.

    Available at http://networkrepository.com/ia-crime-moreno.php.

  5. 5.

    Available at https://snap.stanford.edu/data/ego-Twitter.html.

References

  1. Taleb, N.N.: Antifragile: How to Live in a World We Don’t Understand. Allen Lane, London (2012)

    Google Scholar 

  2. Taleb, N.N., Douady, R.: Mathematical definition, mapping, and detection of (anti) fragility. Quant. Financ. 13(11), 1677–1689 (2013)

    Article  MathSciNet  Google Scholar 

  3. Danchin, A., Binder, P.M., Noria, S.: Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk. Genes 2(4), 998–1016 (2011)

    Article  Google Scholar 

  4. Derbyshire, J., Wright, G.: Preparing for the future: development of an ‘antifragile’ methodology that complements scenario planning by omitting causation. Technol. Forecast. Soc. Chang. 82, 215–225 (2014)

    Article  Google Scholar 

  5. Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. U. S. A. 116(14), 6554–6559 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bright, D., Greenhill, C., Britz, T., Ritter, A., Morselli, C.: Criminal network vulnerabilities and adaptations. Global Crime 18(4), 424–441 (2017)

    Article  Google Scholar 

  7. Duxbury, S.W., Haynie D.L.: Criminal network security: an agent-based approach to evaluating network resilience. Criminology 57(2), 314–342 (2019)

    Article  Google Scholar 

  8. Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009)

    Article  Google Scholar 

  9. Lichtman, M., Vondal, M.T., Clancy, T.C., Reed, J.H.: Antifragile communications. IEEE Syst. J. 12(1), 659–670 (2018)

    Article  ADS  Google Scholar 

  10. Abid, A., Khemakhem, M.T., Marzouk, S., Jemaa, M.B., Monteil, T., Drira, K.: Toward antifragile cloud computing infrastructures. Prog. Comput. Sci. 32, 850–855 (2014)

    Article  Google Scholar 

  11. Fang, Y., Sansavini, G.: Emergence of antifragility by optimum postdisruption restoration planning of infrastructure networks. J. Inf. Syst. 23(4), 04017024 (2017)

    Google Scholar 

  12. Mujumdar, A., Mohalik, S.K., Badrinath R.: Antifragility for intelligent autonomous systems (2018). arXiv: 1802.09159

    Google Scholar 

  13. Jones, K.H.: Engineering antifragile systems: a change in design philosophy. Proc. Comput. Sci. 32, 870–875 (2014)

    Article  Google Scholar 

  14. Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., Rosenthal, C.: Chaos engineering. IEEE Softw. 33(3), 35–41 (2016)

    Article  Google Scholar 

  15. Topirceanu, A., Udrescu M.: Topological fragility versus antifragility: understanding the impact of real-time repairs in networks under targeted attacks. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1215–1222. IEEE, Barcelona (2018)

    Google Scholar 

  16. He, S., Li, S., Ma, H.: Effect of edge removal on topological and functional robustness of complex networks. Phys. A: Stat. Mech. Appl. 388(11), 2243–2253 (2009)

    Article  Google Scholar 

  17. Piraveenan, M., Thedchanamoorthy, G., Uddin, S., Chung, K.S.K.: Quantifying topological robustness of networks under sustained targeted attacks. Soc. Netw. Anal. Min. 3, 939–952 (2013)

    Article  Google Scholar 

  18. Sun, W., Zeng, A.,: Target recovery in complex networks. Eur. Phys. J. B 90(1), 10 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PLoS One 8, e59613 (2013)

    Article  ADS  Google Scholar 

  20. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378 (2000)

    Article  ADS  Google Scholar 

  21. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Phys. A Stat. Mech. Appl. 340(1–3), 388–394 (2004)

    Article  MathSciNet  Google Scholar 

  22. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)

    Article  ADS  Google Scholar 

  23. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circ. Syst. Fund. Theory Appl. 49(1), 54–62 (2002)

    Article  MathSciNet  Google Scholar 

  24. Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464(7291), 984 (2010)

    Article  ADS  Google Scholar 

  25. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag. 3(1), 6–20 (2003)

    Article  MathSciNet  Google Scholar 

  26. Chen, Y.W., Zhang, L.F., Huang, J.P.: The Watts–Strogatz network model developed by including degree distribution: theory and computer simulation. J. Phys. A Math. Theor. 40(29), 8237 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization (2015). http://networkrepository.com

    Google Scholar 

  28. Makse, H.: Software and data. http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/

  29. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  30. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  31. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  Google Scholar 

  32. Dekker, A.H.: Realistic social networks for simulation using network rewiring. In: International Congress on Modelling and Simulation, pp. 677–683 (2007)

    Google Scholar 

  33. Pósfai, M., Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Effect of correlations on network controllability. Sci. Rep. 3, 1067 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Udrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Topîrceanu, A., Udrescu, M., Mărculescu, R. (2020). Complex Networks Antifragility under Sustained Edge Attack-Repair Mechanisms. In: Masuda, N., Goh, KI., Jia, T., Yamanoi, J., Sayama, H. (eds) Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science. NetSci-X 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-38965-9_13

Download citation

Publish with us

Policies and ethics