Skip to main content

The Logic of AGM Learning from Partial Observations

  • Conference paper
  • First Online:
Book cover Dynamic Logic. New Trends and Applications (DALI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12005))

Included in the following conference series:

Abstract

We present a dynamic logic for inductive learning from partial observations by a “rational” learner, that obeys AGM postulates for belief revision. We apply our logic to an example, showing how various concrete properties can be learnt with certainty or inductively by such an AGM learner. We present a sound and complete axiomatization, based on a combination of relational and neighbourhood version of the canonical model method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, our observational events can be seen as corresponding to a special type of (single-agent) epistemic events in the so-called BMS style.

  2. 2.

    A total preorder \(\le \) on X is a reflexive and transitive binary relation such that every two points are comparable: for all \(x, y\in X\), either \(x\le y\) or \(y\le x\) (or both).

  3. 3.

    Since \(\le \) is a total preorder, this definition coincides with the standard definition of maximal elements as \(Max_\le (O):=\{x\in O : \forall y\in O(x\le y \text{ implies } x\le y)\}\).

  4. 4.

    This is a standard method in Dynamic Epistemic Logic and we refer the reader to [18, Chap. 7.4] for further details.

  5. 5.

    When we quantify over learners, learnability with certainty (by some learners) matches the standard concept of “finite identifiability” from Formal Learning Theory.

  6. 6.

    When we quantify over learners, inductive learnability (by some learners) matches the standard concept of “identifiability in the limit” from Formal Learning Theory, see e.g. [13].

  7. 7.

    We use \(\preceq \) to denote the plausibility order in this frame, to distinguish it from the natural order on \(X\subseteq R\).

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50, 510–530 (1985)

    Article  MathSciNet  Google Scholar 

  2. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Rev. Symb. Log. 1, 305–334 (2008)

    Article  MathSciNet  Google Scholar 

  3. Baltag, A., Gierasimczuk, N., Özgün, A., Vargas Sandoval, A.L., Smets, S.: A dynamic logic for learning theory. In: Madeira, A., Benevides, M. (eds.) DALI 2017. LNCS, vol. 10669, pp. 35–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73579-5_3

    Chapter  MATH  Google Scholar 

  4. Baltag, A., Gierasimczuk, N., Smets, S.: Belief revision as a truth-tracking process. In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 187–190. ACM (2011)

    Google Scholar 

  5. Baltag, A., Gierasimczuk, N., Smets, S.: On the solvability of inductive problems: a study in epistemic topology. In: Ramanujam, R. (ed.) Proceedings of the 15th Conference TARK, also Available as a Technical Report in ILLC Prepublication Series PP-2015-13 (2015)

    Google Scholar 

  6. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Proceedings of the 7th Conference TARK, pp. 43–56. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  7. Baltag, A., Özgün, A., Vargas Sandoval, A.L.: Topo-logic as a dynamic-epistemic logic. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 330–346. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_23

    Chapter  MATH  Google Scholar 

  8. Baltag, A., Renne, B.: Dynamic epistemic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2016 edn. (2016)

    Google Scholar 

  9. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Texts Log. Games 3, 9–58 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49, 49–80 (2004)

    Article  MathSciNet  Google Scholar 

  11. Chellas, B.F.: Basic conditional logic. J. Philos. Log. 4, 133–153 (1975)

    Article  MathSciNet  Google Scholar 

  12. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Ann. Pure Appl. Log. 78, 73–110 (1996)

    Article  MathSciNet  Google Scholar 

  13. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  14. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8, 87–117 (1998)

    Article  MathSciNet  Google Scholar 

  15. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)

    MATH  Google Scholar 

  16. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Proceedings of the 4th TARK, pp. 95–105. Morgan Kaufmann (1992)

    Google Scholar 

  17. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 14, 2004 (2004)

    Google Scholar 

  18. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lucia Vargas-Sandoval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baltag, A., Özgün, A., Vargas-Sandoval, A.L. (2020). The Logic of AGM Learning from Partial Observations. In: Soares Barbosa, L., Baltag, A. (eds) Dynamic Logic. New Trends and Applications. DALI 2019. Lecture Notes in Computer Science(), vol 12005. Springer, Cham. https://doi.org/10.1007/978-3-030-38808-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38808-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38807-2

  • Online ISBN: 978-3-030-38808-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics