Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Thermoelectric materials convert heat through temperature gradients into electricity, and vice versa provide cooling capabilities once a potential difference is applied across them. This brief describes important aspects of the theory and numerical simulations that are undertaken in describing electro-thermal transport in complex bandstructure and nanostructured materials, aiming to assist the design of advanced thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beretta, D., Neophytou, N., Hodges, J.M., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G., Tremel, W., Zevalkink, A., Hofmann, A.I., Müller, C., Dörling, B., Campoy-Quiles, M. & Caironia, M.: Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R 138, 210–255 (2019)

    Google Scholar 

  2. Lei, C., Burton, M.R., Nandhakumar, I.S.: Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol. Phys. Chem. Chem. Phys. 18(21), 14164–14167 (2016)

    Article  CAS  Google Scholar 

  3. Mele, P., Narducci, D., Ohta, M., Biswas, K., Morante, J.R., Saini, S., Endo, T. (eds.): Thermoelectric Thin Films: Materials and Devices. Springer (2019)

    Google Scholar 

  4. Koumoto, K., Mori, T.: Thermoelectric Nanomaterials. Springer (2015)

    Google Scholar 

  5. Liu, W., Hu, J., Zhang, S., Deng, M., Han, C.G., Liu, Y.: New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys. 1, 50–60 (2017)

    Article  Google Scholar 

  6. Goldsmid, H.J.: Introduction to Thermoelectricity, pp. 9–24. Heidelberg (2016)

    Google Scholar 

  7. Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: Nanotechnology 24, 205402 (2013)

    Article  Google Scholar 

  8. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  9. Hattori, K., Miyazaki, H., Yoshida, K., Inukai, M., Nishino, Y.: Direct observation of the electronic structure in thermoelectric half-heusler alloys zr1–x m x nisn (m = y and nb). J. App. Phys.117, 205102 (2015)

    Article  Google Scholar 

  10. Perez-Taborda, J.A., Rojo, M.M., Maiz, J., Neophytou, N., Martin-Gonzalez, M.: Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 6, 32778 (2016)

    Google Scholar 

  11. Yokobori, T., Okawa, M., Konishi, K., Takei, R., Katayama, K., Oozono, S., Shinmura, T., Okuda, T., Wadati, H., Sakai, E., Ono, K.: Electronic structure of the hole-doped delafossite oxides CuCr1−xMgxO2. Phys. Rev. B 87, 195124 (2013)

    Google Scholar 

  12. Lu, X., Morelli, D.T., Wang, Y., Lai, W., Xia, Y., Ozolins, V.: Phase stability, crystal structure, and thermoelectric properties of Cu12Sb4S13–xSex solid solutions. Chem. Mater. 28(6), 1781–1786 (2016)

    Article  CAS  Google Scholar 

  13. Lu, X., Morelli, D.T., Xia, Y., Ozolins, V.: Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc. Chem. Mater. 27(2), 408–413 (2015)

    Article  CAS  Google Scholar 

  14. Xi, L., Zhang, Y.B., Shi, X.Y., Yang, J., Shi, X., Chen, L.D., Zhang, W., Yang, J., Singh, D.J.: Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X = Se, S) from first principles. Phys. Rev. B 86(15), 155201 (2012)

    Google Scholar 

  15. Flage-Larsen, E., Diplas, S., Prytz, Ø., Toberer, E.S., May, A.F.: Valence band study of thermoelectric Zintl-phase SrZn2Sb2 and YbZn2Sb2: X-ray photoelectron spectroscopy and density functional theory. Phys. Rev. B 81(20), 205204 (2010)

    Google Scholar 

  16. Neophytou, N., Wagner, M., Kosina, H., Selberherr, S.: Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electr. Mater. 39(9), 1902–1908 (2010)

    Article  CAS  Google Scholar 

  17. van Schilfgaarde, M., Kotani, T., Faleev, S.: Quasiparticle self-consistent g w theory. Phys. Rev. Lett. 96(22), 226402 (2006)

    Google Scholar 

  18. Cheng, L., Liu, H.J., Zhang, J., Wei, J., Liang, J.H., Jiang, P.H., Fan, D.D., Sun, L., Shi, J.: High thermoelectric performance of the distorted bismuth (110) layer. Phys. Chem. Chem. Phys. 18(26), 17373–17379 (2016)

    Article  CAS  Google Scholar 

  19. Kresse, G., Furthmüller, J., Hafner, J.: Ab initio force constant approach to phonon dispersion relations of diamond and graphite. EPL (Europhys. Lett.) 32(9), 729 (1995)

    Article  CAS  Google Scholar 

  20. Parlinski, K., Li, Z.Q., Kawazoe, Y.: Parlinski, Li, and Kawazoe reply. Phys. Rev. Lett. 81(15), 3298 (1998)

    Article  CAS  Google Scholar 

  21. Giannozzi, P., De Gironcoli, S., Pavone, P., Baroni, S.: Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43(9), 7231 (1991)

    Article  CAS  Google Scholar 

  22. Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Roy, A., Mikami, M., Ghosez, P., Raty, J.Y., Allan, D.C., Torrent, M.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002)

    Article  Google Scholar 

  23. Kong, L.T.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182(10), 2201–2207 (2011)

    Article  CAS  Google Scholar 

  24. Kang, J., Wang, L.W.: First-principles Green-Kubo method for thermal conductivity calculations. Phys. Rev. B 96(2), 020302 (2017)

    Google Scholar 

  25. Madsen, G.K., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  CAS  Google Scholar 

  26. Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., Marzari, N.: BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput. Phys. Commun. 185(1), 422–429 (2014)

    Article  CAS  Google Scholar 

  27. Togo, A., Chaput, L., Tanaka, I.: Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91(9), 094306 (2015)

    Google Scholar 

  28. Li, W., Carrete, J., Katcho, N.A., Mingo, N.: ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185(6), 1747–1758 (2014)

    Article  CAS  Google Scholar 

  29. Bowler, D.R., Miyazaki, T.: Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys. Condens. Matter 22(7), 074207(2010)

    CAS  Google Scholar 

  30. Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122(8), 084119 (2005)

    Article  Google Scholar 

  31. Poncé, S., Margine, E.R., Verdi, C., Giustino, F.: EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phy. Commun. 209, 116–133 (2016)

    Article  Google Scholar 

  32. Hellman, O., Broido, D.A.: Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90(13), 134309 (2014)

    Google Scholar 

  33. Chiloyan, V., Huberman, S., Ding, Z., Mendoza, J., Maznev, A.A., Nelson, K.., Chen, G.: Micro/nanoscale thermal transport by phonons beyond the relaxation time approximation: Green’s function with the full scattering matrix. arXiv:1711.07151 (2017)

  34. Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A.: Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91(23), 231922 (2007)

    Article  Google Scholar 

  35. Carrete, J., Li, W., Mingo, N., Wang, S., Curtarolo, S.: Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4(1), 011019 (2014)

    Google Scholar 

  36. Zhu, H., Hautier, G., Aydemir, U., Gibbs, Z.M., Li, G., Bajaj, S., Pöhls, J.-H., Broberg, D., Chen, W., Jain, A., White, M.A.: Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3(40), 10554–10565 (2015)

    Article  CAS  Google Scholar 

  37. Oliynyk, A.O., Antono, E., Sparks, T.D., Ghadbeigi, L., Gaultois, M.W., Meredig, B., Mar, A.: High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem. Mater. 28(20), 7324–7331 (2016)

    Article  CAS  Google Scholar 

  38. Xing, G., Sun, J., Li, Y., Fan, X., Zheng, W., Singh, D.J.: Electronic fitness function for screening semiconductors as thermoelectric materials. Phys. Rev. Mater. 1(6), 065405 (2017)

    Google Scholar 

  39. Chen, X., Parker, D., Singh, D..: Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci. Rep. 3, 3168 (2013)

    Google Scholar 

  40. Li, D., McGaughey, A.J.: Phonon dynamics at surfaces and interfaces and its implications in energy transport in nanostructured materials—an opinion paper. Nanoscale Microscale Thermophys. Eng. 19(2), 166–182 (2015)

    Article  Google Scholar 

  41. Xu, Z.: Heat transport in low-dimensional materials: a review and perspective. Theor. Appl. Mech. Lett. 6(3), 113–121 (2016)

    Article  Google Scholar 

  42. Katz, H.E., Poehler, T.O. (eds.): Innovative Thermoelectric Materials: Polymer, Nanostructure and Composite Thermoelectrics. World Scientific (2016)

    Google Scholar 

  43. McGaughey, A.J., Kaviany, M: Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Adv. Heat Transf. 39, 169–255 (2006)

    Google Scholar 

  44. de Sousa Oliveira, L., Neophytou, N.: Large-scale molecular dynamics investigation of geometrical features in nanoporous Si. Phys. Rev. B 100, 035409 (2019)

    Google Scholar 

  45. Meller, J. et al.: Molecular dynamics. ELS (2001)

    Google Scholar 

  46. LeSar, R.: Introduction to Computational Materials Science: Fundamentals to Applications. Cambridge University Press (2013)

    Google Scholar 

  47. Tian, Z., Lee, S., Chen. G.: A comprehensive review of heat transfer in thermoelectric materials and devices. Ann. Rev. Heat Transf. 17, 425–483 2014

    Article  Google Scholar 

  48. Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 1954

    Article  CAS  Google Scholar 

  49. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)

    Article  Google Scholar 

  50. Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082–6085 (1997)

    Article  Google Scholar 

  51. Sellan, D.P., Landry, E.S., Turney, J.E., McGaughey, A.J.H., Amon, C.H.: Size effects in molecular dynamics thermal conductivity predictions. Phy. Rev. B 81(21), 214305 (2010)

    Google Scholar 

  52. Vargiamidis, V., & Neophytou, N.: Hierarchical nanostructuring approaches for thermoelectric materials with high power factors. Physical Review B, 99(4), 045405, (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neophytos Neophytou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neophytou, N. (2020). Introduction. In: Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-38681-8_1

Download citation

Publish with us

Policies and ethics