Skip to main content

Parameter Determination for Energy Balance Models with Memory

  • Chapter
  • First Online:
Book cover Mathematical Approach to Climate Change and its Impacts

Part of the book series: Springer INdAM Series ((SINDAMS,volume 38))

Abstract

In this paper, we study two Energy Balance Models with Memory arising in climate dynamics, which consist in a 1D degenerate nonlinear parabolic equation involving a memory term, and possibly a set-valued reaction term (of Sellers type and of Budyko type, in the usual terminology). We provide existence and regularity results, and obtain uniqueness and stability estimates that are useful for the determination of the insolation function in Sellers’ model with memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and control of infinite-dimensional systems. In: Systems and Control: Foundations and Applications, vol. 1. Birkhauser, Boston (1992)

    Google Scholar 

  2. Bhattacharya, K., Ghil, M., Vulis, I.L.: Internal variability of an energy-balance model with delayed albedo effects. J. Atmos. Sci. 39, 1747–1773 (1982)

    Article  Google Scholar 

  3. Bódai, T., Lucarini, V., Lunkeit, F., Boschi, R.: Global instability in the Ghil-Sellers model. Clim. Dyn. 44, 3361–3381 (2015)

    Article  Google Scholar 

  4. Budyko, M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21(5), 611–619 (1969)

    Article  Google Scholar 

  5. Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998)

    Article  MathSciNet  Google Scholar 

  6. Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10(2), 153–190 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47(1), 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cannarsa, P., Rocchetti, D., Vancostenoble, J.: Generation of analytic semi-groups in L 2 for a class of second order degenerate elliptic operators. Control Cybern. 37(4), 831–878 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cannarsa, P., Martinez, P., Vancostenoble, J.: Global Carleman Estimates for Degenerate Parabolic Operators with Applications. Memoirs of the American Mathematical Society, vol. 239, no. 1133. American Mathematical Society, Providence, RI (2016)

    Google Scholar 

  10. Cannarsa, P., Floridia, G., Khapalov, A.Y.: Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign. J. Math. Pures Appl. 108(4), 425–458 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cristofol, M., Roques, L.: Stable estimation of two coefficients in a nonlinear Fisher-KPP equation. Inverse Prob. 29(9), 095007, 18 pp. (2013)

    Google Scholar 

  12. Diaz, J.I.: Mathematical analysis of some diffusive energy balance models in climatology. In: Diaz, J.I., Lions, J.L. (eds.) Mathematics, Climate and Environment, pp. 28–56. Masson, Paris (1993)

    MATH  Google Scholar 

  13. Diaz, J.I.: On the mathematical treatment of energy balance climate models. In: The Mathematics of Models for Climatology and Environment. NATO ASI Series. Series I: Global Environmental Change, vol. 48. Springer, Berlin (1997)

    Google Scholar 

  14. Diaz, J.I.: Diffusive energy balance models in climatology. In: Studies in Mathematics and its Applications, vol. 31. North-Holland, Amsterdam (2002)

    Google Scholar 

  15. Diaz, J.I., Hetzer, G.: A functional quasilinear reaction-diffusion equation arising in climatology. In: Équations aux dérivées partielle et applications. Articles dédiés à J.L. Lions, pp. 461–480. Elsevier, Paris (1998)

    Google Scholar 

  16. Diaz, J.I., Tello, L.: A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology. Collect. Math. 50, 19–51 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Diaz, J.I., Hetzer, G., Tello, L.: An energy balance climate model with hysteresis. Nonlinear Anal. 64, 2053–2074 (2006)

    Article  MathSciNet  Google Scholar 

  18. Floridia, G.: Approximate controllability of nonlinear degenerate parabolic equations governed by bilinear control. J. Differ. Equ. 257(9), 3382–3422 (2014)

    Article  MathSciNet  Google Scholar 

  19. Floridia, G., Nitsch, C., Trombetti, C.: Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states. ESAIM COCV. https://doi.org/10.1051/cocv/2019066

  20. Fraedrich, K.: Structural and stochastic analysis of a zero-dimensional climate system. Q. J. R. Meteorol. Soc. 104, 461–474 (1978)

    Article  Google Scholar 

  21. Fraedrich, K.: Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q. J. R. Meteorol. Soc. 105, 147–167 (1979)

    Article  Google Scholar 

  22. Ghil, M.: Climate stability for a Sellers-type model. J. Atmos. Sci. 33, 3–20 (1976)

    Article  MathSciNet  Google Scholar 

  23. Ghil, M., Childress, S.: Topics in Geophysical Fluid Dynamics: Atmosphere Dynamics, Dynamo Theory, and Climate Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  24. Guerrero, S., Imanuvilov, O.Y.: Remarks on non controllability of the heat equation with memory. ESAIM COCV 19, 288–300 (2013)

    Article  MathSciNet  Google Scholar 

  25. Held, I.M., Suarez, M.J.: Simple albedo feedback models of the ice caps. Tellus 26, 613–629 (1974)

    Article  Google Scholar 

  26. Hetzer, G.: Global existence, uniqueness, and continuous dependence for a reaction-diffusion equation with memory. Electron. J. Diff. Equ. 5, 1–16 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Hetzer, G.: The number of stationary solutions for a one-dimensional Budyko-type climate model. Nonlinear Anal. Real World Appl. 2, 259–272 (2001)

    Article  MathSciNet  Google Scholar 

  28. Hetzer, G.: Global existence for a functional reaction-diffusion problem from climate modeling. Discrete Contin. Dyn. Syst. 31, 660–671 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Imanuvilov, O.Y., Yamamoto, M.: Lipschitz stability in inverse parabolic problems by the Carleman estimates. Inverse Prob. 14(5), 1229–1245 (1998)

    Article  MathSciNet  Google Scholar 

  30. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the Earth’s climate system. Proc. Nath. Acad. Sci. U. S. A. 105, 1786–1793 (2008)

    Article  Google Scholar 

  31. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1 (French). Travaux et recherches mathématiques, No. 17. Dunod, Paris (1968)

    Google Scholar 

  32. Martinez, P., Tort, J., Vancostenoble, J.: Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold. Riv. Mat. Univ. Parma 7, 351–389 (2016)

    MathSciNet  MATH  Google Scholar 

  33. North, G.R., Mengel, J.G., Short, D.A.: Simple energy balance model resolving the season and continents: applications to astronomical theory of ice ages. J. Geophys. Res. 88, 6576–6586 (1983)

    Article  Google Scholar 

  34. Pandolfi, L.: Riesz systems, spectral controllability and a source identification problems for heat equation with memory. Discrete Contin. Dyn. Syst. 4(3), 745–759 (2011)

    Article  MathSciNet  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)

    Google Scholar 

  36. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (2012)

    MATH  Google Scholar 

  37. Roques, L., Cristofol, M.: On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation. Nonlinearity 23(3), 675–686 (2010)

    Article  MathSciNet  Google Scholar 

  38. Roques, L., Checkroun, M.D., Cristofol, M., Soubeyrand, S., Ghil, M.: Determination and estimation of parameters in energy balance models with memory. Proc. R. Soc. A 470, 20140349 (2014)

    Article  Google Scholar 

  39. Sellers, W.D.: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8(3), 392–400 (1969)

    Article  Google Scholar 

  40. Tanabe, H.: On the equations of evolution in a Banach space. Osaka Math. J. 12(2), 363–376 (1960)

    MathSciNet  MATH  Google Scholar 

  41. Tao, Q., Bao, H.: On the null controllability of heat equation with memory. J. Math. Anal. Appl. 440, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  42. Tort, J., Vancostenoble, J.: Determination of the insolation function in the nonlinear climates Sellers model. Ann. I. H. Poincaré 29, 683–713 (2012)

    Article  Google Scholar 

  43. Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Essex (1987)

    Google Scholar 

  44. Walsh, J., Rackauckas, C.: On the Budyko-Sellers energy balance energy climate model with ice line coupling. Discrete Contin. Dyn. Syst. B 20, 2187–2216 (2015)

    Article  MathSciNet  Google Scholar 

  45. Zaliapin, I., Ghil, M.: Another look at climate sensitivity. Nonlinear Process. Geophys. 17, 113–122 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Istituto Nazionale di Alta Matematica through the European Research Group GDRE CONEDP. The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The authors also wish to thank K. Fraedrich for a very interesting discussion on the question of Energy Balance Models with Memory, and M. Ghil for inspiring remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piermarco Cannarsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cannarsa, P., Malfitana, M., Martinez, P. (2020). Parameter Determination for Energy Balance Models with Memory. In: Cannarsa, P., Mansutti, D., Provenzale, A. (eds) Mathematical Approach to Climate Change and its Impacts. Springer INdAM Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-38669-6_2

Download citation

Publish with us

Policies and ethics