Skip to main content

A Galerkin Approach for Modelling the Pantograph-Catenary Interaction

  • Conference paper
  • First Online:
Advances in Dynamics of Vehicles on Roads and Tracks (IAVSD 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 213 Accesses

Abstract

The pantograph-catenary interaction was modelled for high-speed electric and hybrid trains. A lumped-mass pantograph model was used and the overhead wires were modelled as Euler-Bernoulli beams. Each vertical and horizontal wire deflection was decomposed into an infinite series of spatial basis functions, which were chosen to be the eigenmodes of the Euler-Bernoulli PDE, and corresponding time functions. The boundary conditions were used to evaluate the spatial basis functions and reduce the PDEs to ODEs in terms of the time functions. Elimination of variables was used to remove the algebraic contact constraints and reduce the overall index-three DAE to an ODE. This linear, time-varying ODE was solved by integration and the elimination process was reversed in order to recover the original states. The Simulink model was validated against the 2002 and 2018 European Standards, BS:EN 50318:2002 and BS:EN 50318:2018 respectively. In both cases, the model produced accurate results with exceptional simulation speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrósio, J., Pombo, J., Pereira, M., Antunes, P., Mósca, A.: A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains. J. Theor. Appl. Mech. 50(3), 681–699 (2012)

    Google Scholar 

  2. Benet, J., Alberto, A., Arias, E., Rojo, T.: A mathematical model of the pantograph-catenary dynamic interaction with several contact wires. Int. J. Appl. Math. 37(2) (2007)

    Google Scholar 

  3. Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y.H., Finner, L., Ikeda, M., Kwon, S.Y., Massat, J.P., Stichel, S., Tur, M., et al.: The results of the pantograph-catenary interaction benchmark. Veh. Syst. Dyn. 53(3), 412–435 (2015)

    Article  Google Scholar 

  4. Dahlberg, T.: Moving force on an axially loaded beam—with applications to a railway overhead contact wire. Veh. Syst. Dyn. 44(8), 631–644 (2006)

    Article  Google Scholar 

  5. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  6. Mantegazza, P., Masarati, P.: Analysis of systems of differential-algebraic equations (DAE). Graduate Course on “Multibody System Dynamics” (2012)

    Google Scholar 

  7. Pombo, J., Ambrósio, J., Pereira, M., Rauter, F., Collina, A., Facchinetti, A.: Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains. Veh. Syst. Dyn. 47(11), 1327–1347 (2009)

    Article  Google Scholar 

  8. Seo, J.H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 42(2), 199–215 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martin, J., Duncan, S. (2020). A Galerkin Approach for Modelling the Pantograph-Catenary Interaction. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics