Skip to main content

A Study on Optimization of Manufacturing Time in External Cylindrical Grinding

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 104))

Abstract

This paper introduces an optimization study on the determination of the optimum replaced grinding wheel diameter for getting minimum manufacturing time in external grinding stainless steel. In the study, several input grinding parameters including the initial grinding wheel diameter, the total depth of dressing cut, the wheel life and the radial grinding wheel wear per dress. Also, to evaluate the effects of the input parameters on the optimum replaced wheel diameter, a simulation experiment was planned and conducted. Lastly, a regression model to calculate the optimum replaced wheel diameter was suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rowe, W.B.: Principle of Modern Grinding Technology. William Andrew (2009)

    Google Scholar 

  2. Malkin, S., Guo, C.: Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press (2008)

    Google Scholar 

  3. Chatterjee, S., Rudrapati, R., Kumarpal, P., Nandi, G.: Experiments, analysis and parametric optimization of cylindrical traverse cut grinding of aluminium bronze. Mater. Today: Proc. 5(2), 5272–5280 (2018)

    Google Scholar 

  4. Vu, N.-P., Nguyen, Q.-T., Tran, T.-H., Le, H.-K., Nguyen, A.-T., Luu, A.-T., Nguyen, V.-T., Le, X.-H.: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine. Appl. Sci. 9(5), 957 (2019)

    Article  Google Scholar 

  5. Tung, L.A., Pi, V.N., Ha, D.T.T., Hung, L.X., Banh, T.L.: A study on optimization of surface roughness in surface grinding 9CrSi tool steel by using Taguchi method. In: Fujita, H., et al. (eds.): ICERA 2018. LNNS, vol. 63, pp. 100–108 (2019). https://doi.org/10.1007/978-3-030-04792-4_15

    Google Scholar 

  6. Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding parameters using enumeration method. J. Mater. Process. Technol. 112, 63–67 (2001)

    Article  Google Scholar 

  7. Wen, X.M., Tay, A.A.O., Nee, A.Y.C.: Micro-computer-based optimization of the surface grinding process. J. Mater. Process. Technol. 29(1–3), 75–90 (1992)

    Article  Google Scholar 

  8. Mekala, K., Chandradas, J., Chandrasekaran, K., Kannan, T.T.M., Ramesh, E., Babu, R.N.: Optimization of cylindrical grinding parameters of austenitic stainless steel rods (AISI 316) by Taguchi method. Int. J. Mech. Eng. Rob. Res. 3(2), 208 (2014)

    Google Scholar 

  9. Tu, H.X., Thao, L.P., Hong, T.T., Nga, N.T.T., Trung, D.D., Gong, J., Pi, V.N.: Influence of dressing parameters on surface roughness of workpiece for grinding hardened 9XC tool steel. In: IOP Conference Series: Materials Science and Engineering, vol. 542, conference 1 (2018). https://doi.org/10.1088/1757-899X/542/1/012008

    Article  Google Scholar 

  10. Vidal, G., Ortega, N., Bravo, H., Dubar, M., González, H.: An analysis of electroplated CBN grinding wheel wear and conditioning during creep feed grinding of aeronautical alloys. Metals 8, 1–24 (2018)

    Article  Google Scholar 

  11. Daneshia, A., Jandaghia, N., Tawakoli, T.: Effect of dressing on internal cylindrical grinding. Procedia CIRP 14, 37–41 (2014)

    Article  Google Scholar 

  12. Le, X.H., Tran, T.H., Luu, A.T., Nguyen, T.T.N., Vu, N.P.: Optimum dressing parameters for maximum material removal rate when internal cylindrical grinding using Taguchi method. Int. J. Mech. Eng. Technol. 9, 123–129 (2018)

    Google Scholar 

  13. Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding process parameters using enumeration method. J. Mater. Process. Technol. 112(1), 63–67 (2001)

    Article  Google Scholar 

  14. Hung, L.X., Lien, V.T., Pi, V.N., Long, B.T.: A study on coolant parameters in internal grinding of 9CrSi steel. Mater. Sci. Forum 950, 24–31 (2019)

    Article  Google Scholar 

  15. Tu, H.X., Jun, G., Hien, B.T., Hung, L.X., Tung, L.A., Pi, V.N.: Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique. SSRG Int. J. Mech. Eng. 5(6), 1–5 (2018). https://doi.org/10.14445/23488360/IJME-V5I6P101

    Article  Google Scholar 

  16. Tu, H.X., Pi, V.N., Jun, G.: A study on determination of optimum parameters for lubrication in external cylindrical grinding base on Taguchi method. Key Eng. Mater. 796, 97–102 (2019)

    Article  Google Scholar 

  17. Palmer, J., Ghadbeigi, H., Novovic, D., Curtis, D.: An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing. J. Manuf. Process. 31, 348–355 (2018)

    Article  Google Scholar 

  18. Yadav, H.S., Shrivastava, R.K.: Effect of process parameters on surface roughness and Mrr in cylindrical grinding using response surface method. Int. J. Eng. Res. Technol. 3(3) (2014)

    Google Scholar 

  19. Pi, V.N., The, P.Q., Khiem, V.H., Huong, N.N.: Cost optimization of external cylindrical grinding. Appl. Mech. Mater. 312, 982–989 (2013)

    Article  Google Scholar 

  20. Tu, H.X., Jun, G., Hung, L.X., Tung, L.A., Pi, V.N.: Calculation of optimum exchanged grinding wheel diameter when external grinding tool steel 9CrSi. Int. J. Mech. Eng. Robot. Res. 8(1), 59–64 (2019)

    Google Scholar 

  21. Hung, L.X., Pi, V.N., Tung, L.A., Tu, H.X., Jun, G., Long, B.: Determination of optimal exchanged grinding wheel diameter when internally grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417, 012–026 (2018)

    Article  Google Scholar 

  22. Pi, V.N., Hung, L.X., Tung, L.N., Long, B.T.: Cost optimization of internal grinding. J. Mater. Sci. Eng. B 6, 291–296 (2016)

    Google Scholar 

  23. Hung, L.X., Ky, L.H., Hong, T.T., Dung, H.T., Lien, V.T., Tung, L.A., Long, B.T., Pi, V.N.: A study on cost optimization of internal cylindrical grinding. Int. J. Mech. Eng. Technol. (IJMET) 10(1), 414–423 (2019)

    Google Scholar 

  24. Tran, T.-H., Le, X.-H., Nguyen, Q.-T., Le, H.-K., Hoang, T.-D., Luu, A.-T., Banh, T.-L., Vu, N.-P.: Optimization of exchanged grinding wheel diameter for minimum grinding cost in internal grinding. Appl. Sci. 9(7), 1363 (2019)

    Article  Google Scholar 

  25. Le, X.H., Vu, N.P., Luu, A.T., Tu, H.X., Jun, G., Banh, T.L.: Determination of optimum exchanged grinding wheel diameter when internal grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417, conference 1 (2018). https://doi.org/10.1088/1757-899X/417/1/012026

    Article  Google Scholar 

  26. Pi, V.N., Tung, L.A., Hung, L.X., Van Ngoc, N.: Experimental determination of optimum exchanged diameter in surface grinding process. J. Environ. Sci. Eng. A 6, 85–89 (2017)

    Google Scholar 

  27. Hoang, T.D., Tran, T.H., Van Cuong, N., Le, H.K., Nga, N.T.T.: An optimization study on surface grinding stainless steel. Int. J. Eng. Technol. 7(4), 6621–6625 (2018). https://doi.org/10.14419/ijet.v7i4.29442

    Article  Google Scholar 

  28. Tran, T.-H., Luu, A.-T., Nguyen, Q.-T., Le, H.-K., Nguyen, A.-T., Hoang, T.-D., Le, X.-H., Banh, T.-L., Vu, N.-P.: Optimization of exchanged grinding wheel diameter for surface grinding tool steel based on the cost analysis. Metals 9(4), 448 (2019). https://doi.org/10.3390/met9040448

    Article  Google Scholar 

  29. Pi, V.N., Khiem, V.H., Cuong, P.T.: Building formulas for calculation of cutting regime for external cylindrical grinding. Vietnam Mech. Eng. J. (12), 18–23 (2012). (in Vietnamese)

    Google Scholar 

  30. Kozuro, L.M., Panov, A.A., Remizovski, E.I., Tristosepdov, P.S.: Handbook of Grinding. Publish Housing of High-Education, Minsk (1981)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by Thai Nguyen University of Technology for a scientific project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Pi Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tung, L.A. et al. (2020). A Study on Optimization of Manufacturing Time in External Cylindrical Grinding. In: Sattler, KU., Nguyen, D., Vu, N., Tien Long, B., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_14

Download citation

Publish with us

Policies and ethics