Skip to main content

Hepatic Stellate Cells in Liver Tumor

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1234))

Abstract

Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are the most common types of primary liver cancers. Moreover, the liver is the second most frequently involved organ in cancer metastasis after lymph nodes. The tumor microenvironment is crucial for the development of both primary and secondary liver cancers. The hepatic microenvironment consists of multiple cell types, including liver sinusoidal endothelial cells, Kupffer cells, natural killer cells, liver-associated lymphocytes, and hepatic stellate cells (HSCs). The microenvironment of a normal liver changes to a tumor microenvironment when tumor cells exist or tumor cells migrate to and multiply in the liver. Interactions between tumor cells and non-transformed cells generate a tumor microenvironment that contributes significantly to tumor progression. HSCs play a central role in the tumor microenvironment crosstalk. As this crosstalk is crucial for liver carcinogenesis and liver-tumor development, elucidating the mechanism underlying the interaction of HSCs with the tumor microenvironment could provide potential therapeutic targets for liver cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAFs:

Cancer-associated fibroblasts

CCL2:

Chemokine (C-C motif) ligand 2

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

FAP:

Fibroblast activation protein

FGF:

Fibroblast growth factor

GI tract:

Gastrointestinal tract

HCC:

Hepatocellular carcinoma

HGF:

Hepatocyte growth factor

HSCs:

Hepatic stellate cells

ICC:

Intrahepatic cholangiocarcinoma

IGF-I:

Insulin-like growth factor I

IL:

Interleukin

LSECs:

Liver sinusoidal endothelial cells

MCP1:

Monocyte chemoattractant protein 1

MDSCs:

Myeloid-derived suppressor cells

MFB:

Myofibroblast

MMPs:

Matrix metalloproteinases

NK cell:

Natural killer cell

OPN:

Osteopontin

PDGF:

Platelet-derived growth factor

SDF-1:

Stromal cell-derived factor-1

TAMs:

Tumor-associated macrophages

TGF-β:

Transforming growth factor-β

TILs:

Tumor-infiltrating leukocytes

TIMPs:

Tissue inhibitors of matrix metalloproteinases

Tregs:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

α-SMA:

α-smooth muscle actin

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Bertuccio P, Turati F, Carioli G et al (2017) Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol 67(2):302–309

    Article  PubMed  Google Scholar 

  3. Llovet JM, Zucman-Rossi J, Pikarsky E et al (2016) Hepatocellular carcinoma. Nature reviews. Disease primers 2:16018

    Article  PubMed  Google Scholar 

  4. Ananthakrishnan A, Gogineni V, Saeian K (2006) Epidemiology of primary and secondary liver cancers. Semin Interv Radiol 23(1):47–63

    Article  Google Scholar 

  5. Disibio G, French SW (2008) Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med 132(6):931–939

    PubMed  Google Scholar 

  6. Golubnitschaja O, Sridhar KC (2016) Liver metastatic disease: new concepts and biomarker panels to improve individual outcomes. Clin Exp Metastasis 33(8):743–755

    Article  CAS  PubMed  Google Scholar 

  7. Gao Q, Wang XY, Qiu SJ et al (2011) Tumor stroma reaction-related gene signature predicts clinical outcome in human hepatocellular carcinoma. Cancer Sci 102(8):1522–1531

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM (2013) Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 144(3):512–527

    Article  PubMed  Google Scholar 

  9. Hellerbrand C (2013) Hepatic stellate cells--the pericytes in the liver. Pflugers Arch 465(6):775–778

    Article  CAS  PubMed  Google Scholar 

  10. Dubuisson L, Lepreux S, Bioulac-Sage P et al (2001) Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol 34(4):514–522

    Article  CAS  PubMed  Google Scholar 

  11. Amann T, Bataille F, Spruss T et al (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100(4):646–653

    Article  CAS  PubMed  Google Scholar 

  12. Yin C, Evason KJ, Asahina K, Stainier DY (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 123(5):1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346

    Article  CAS  PubMed  Google Scholar 

  14. Seyer JM, Hutcheson ET, Kang AH (1977) Collagen polymorphism in normal and cirrhotic human liver. J Clin Invest 59(2):241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murata K, Kudo M, Onuma F, Motoyama T (1984) Changes of collagen types at various stages of human liver cirrhosis. Hepato-Gastroenterology 31(4):158–161

    CAS  PubMed  Google Scholar 

  16. Friedman SL (1999) Cytokines and fibrogenesis. Semin Liver Dis 19(2):129–140

    Article  CAS  PubMed  Google Scholar 

  17. Ramadori G, Armbrust T (2001) Cytokines in the liver. Eur J Gastroenterol Hepatol 13(7):777–784

    Article  CAS  PubMed  Google Scholar 

  18. Campbell JS, Hughes SD, Gilbertson DG et al (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 102(9):3389–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mikula M, Proell V, Fischer AN, Mikulits W (2006) Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 209(2):560–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Zijl F, Mair M, Csiszar A et al (2009) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28(45):4022–4033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fausto N (1999) Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis 19(3):243–252

    Article  CAS  PubMed  Google Scholar 

  22. Bedossa P, Peltier E, Terris B, Franco D, Poynard T (1995) Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21(3):760–766

    CAS  PubMed  Google Scholar 

  23. Shirai Y, Kawata S, Tamura S et al (1994) Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 73(9):2275–2279

    Article  CAS  PubMed  Google Scholar 

  24. Nagahara T, Shiraha H, Sawahara H et al (2015) Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep 34(3):1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paik SY, Park YN, Kim H, Park C (2003) Expression of transforming growth factor-beta1 and transforming growth factor-beta receptors in hepatocellular carcinoma and dysplastic nodules. Mod Pathol 16(1):86–96

    Article  PubMed  Google Scholar 

  26. Copple BL (2010) Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int 30(5):669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caja L, Dituri F, Mancarella S et al (2018) TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci 19(5):1294

    Article  PubMed Central  CAS  Google Scholar 

  28. Eiro N, Vizoso FJ (2014) Importance of tumor/stroma interactions in prognosis of hepatocellular carcinoma. Hepatobiliary Surg Nutr 3(2):98–101

    PubMed  PubMed Central  Google Scholar 

  29. Kubo N, Araki K, Kuwano H, Shirabe K (2016) Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 22(30):6841–6850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sancho-Bru P, Juez E, Moreno M et al (2010) Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int 30(1):31–41

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen-Lefebvre AT, Horuzsko A (2015) Kupffer cell metabolism and function. J Enzymol Metab 1(1)

    Google Scholar 

  32. Van Overmeire E, Laoui D, Keirsse J, Bonelli S, Lahmar Q, Van Ginderachter JA (2014) STAT of the union: dynamics of distinct tumor-associated macrophage subsets governed by STAT1. Eur J Immunol 44(8):2238–2242

    Article  PubMed  CAS  Google Scholar 

  33. Xiong XX, Qiu XY, Hu DX, Chen XQ (2017) Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Mol Pharmacol 92(3):246–255

    Article  CAS  PubMed  Google Scholar 

  34. McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 87(1035):20130676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim KR, Moon HE, Kim KW (2002) Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med 80(11):703–714

    Article  CAS  PubMed  Google Scholar 

  36. von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S (2001) Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 48(1):87–96

    Article  Google Scholar 

  37. Kin M, Torimura T, Ueno T, Inuzuka S, Tanikawa K (1994) Sinusoidal capillarization in small hepatocellular carcinoma. Pathol Int 44(10–11):771–778

    CAS  PubMed  Google Scholar 

  38. Ni Y, Li JM, Liu MK et al (2017) Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 23(43):7666–7677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geraud C, Mogler C, Runge A et al (2013) Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int. 33(9):1428–1440

    Article  CAS  PubMed  Google Scholar 

  40. Marra F, Tacke F (2014) Roles for chemokines in liver disease. Gastroenterology 147(3):577–594. e571

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Cheng G, Hao M et al (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kotsianidis I, Bouchliou I, Nakou E et al (2009) Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23(3):510–518

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu Y, Dobashi K, Imai H et al (2009) CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int J Immunopathol Pharmacol 22(1):43–51

    Article  CAS  PubMed  Google Scholar 

  44. Wald O, Izhar U, Amir G et al (2006) CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J Immunol 177(10):6983–6990

    Article  CAS  PubMed  Google Scholar 

  45. Wei S, Kryczek I, Edwards RP et al (2007) Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67(15):7487–7494

    Article  CAS  PubMed  Google Scholar 

  46. Hu F, Miao L, Zhao Y, Xiao YY, Xu Q (2015) A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma. Drug Des Devel Ther 9:3625–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neve Polimeno M, Ierano C, D’Alterio C et al (2015) CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cell Mol Immunol 12(4):474–482

    Article  CAS  PubMed  Google Scholar 

  48. Xiang Z, Zeng Z, Tang Z et al (2009) Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J 15(6):519–525

    Article  PubMed  Google Scholar 

  49. Xiang ZL, Zeng ZC, Tang ZY et al (2009) Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer 9:176

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zagzag D, Lukyanov Y, Lan L et al (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232

    Article  CAS  PubMed  Google Scholar 

  51. Bocca C, Novo E, Miglietta A, Parola M (2015) Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol 1(5):477–488

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ding BS, Nolan DJ, Butler JM et al (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LeCouter J, Moritz DR, Li B et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299(5608):890–893

    Article  CAS  PubMed  Google Scholar 

  54. Maslak E, Gregorius A, Chlopicki S (2015) Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 67(4):689–694

    Article  CAS  PubMed  Google Scholar 

  55. Jia CC, Wang TT, Liu W et al (2013) Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 8(5):e63243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guirouilh J, Castroviejo M, Balabaud C, Desmouliere A, Rosenbaum J (2000) Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver myofibroblasts. Int J Oncol 17(4):777–781

    CAS  PubMed  Google Scholar 

  57. Guirouilh J, Le Bail B, Boussarie L et al (2001) Expression of hepatocyte growth factor in human hepatocellular carcinoma. J Hepatol 34(1):78–83

    Article  CAS  PubMed  Google Scholar 

  58. Efimova EA, Glanemann M, Liu L et al (2004) Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines. Eur Surg Res 36(5):300–307

    Article  CAS  PubMed  Google Scholar 

  59. Monvoisin A, Neaud V, De Ledinghen V et al (1999) Direct evidence that hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells is mediated by urokinase. J Hepatol 30(3):511–518

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K (2000) Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology 32(4 Pt 1):796–802

    Article  CAS  PubMed  Google Scholar 

  61. Horiguchi N, Takayama H, Toyoda M et al (2002) Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 21(12):1791–1799

    Article  CAS  PubMed  Google Scholar 

  62. Zhao W, Zhang L, Yin Z et al (2011) Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 129(11):2651–2661

    Article  CAS  PubMed  Google Scholar 

  63. Taura K, De Minicis S, Seki E et al (2008) Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135(5):1729–1738

    Article  CAS  PubMed  Google Scholar 

  64. Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R (2015) Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 45(3):326–336

    Article  CAS  PubMed  Google Scholar 

  65. Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225

    Article  CAS  PubMed  Google Scholar 

  66. Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72(10):2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ju MJ, Qiu SJ, Fan J et al (2009) Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 131(4):498–510

    Article  CAS  PubMed  Google Scholar 

  68. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179

    Article  CAS  PubMed Central  Google Scholar 

  69. Lau EY, Lo J, Cheng BY et al (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep 15(6):1175–1189

    Article  CAS  PubMed  Google Scholar 

  70. Chen WJ, Ho CC, Chang YL et al (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5:3472

    Article  PubMed  CAS  Google Scholar 

  71. Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cai XY, Gao Q, Qiu SJ et al (2006) Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 132(5):293–301

    Article  PubMed  Google Scholar 

  73. Li YW, Qiu SJ, Fan J et al (2011) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54(3):497–505

    Article  PubMed  CAS  Google Scholar 

  74. Unitt E, Marshall A, Gelson W et al (2006) Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 45(2):246–253

    Article  CAS  PubMed  Google Scholar 

  75. Dong P, Ma L, Liu L et al (2016) CD86(+)/CD206(+), diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis. Int J Mol Sci 17(3):320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pan QZ, Pan K, Zhao JJ et al (2013) Decreased expression of interleukin-36alpha correlates with poor prognosis in hepatocellular carcinoma. Cancer Immunol Immunother 62(11):1675–1685

    Article  CAS  PubMed  Google Scholar 

  77. Gabrielson A, Wu Y, Wang H et al (2016) Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res 4(5):419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chew V, Chen J, Lee D et al (2012) Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61(3):427–438

    Article  CAS  PubMed  Google Scholar 

  79. Sun Y, Xi D, Ding W, Wang F, Zhou H, Ning Q (2014) Soluble FGL2, a novel effector molecule of activated hepatic stellate cells, regulates T-cell function in cirrhotic patients with hepatocellular carcinoma. Hepatol Int 8(4):567–575

    Article  PubMed  Google Scholar 

  80. Yu MC, Chen CH, Liang X et al (2004) Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40(6):1312–1321

    Article  CAS  PubMed  Google Scholar 

  81. Ha TY (2009) The role of regulatory T cells in cancer. Immune Netw 9(6):209–235

    Article  PubMed  PubMed Central  Google Scholar 

  82. Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255–263

    Article  CAS  PubMed  Google Scholar 

  83. Zhao W, Zhang L, Xu Y et al (2014) Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest 94(2):182–191

    Article  CAS  PubMed  Google Scholar 

  84. Chew V, Tow C, Teo M et al (2010) Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 52(3):370–379

    Article  CAS  PubMed  Google Scholar 

  85. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452

    Article  CAS  PubMed  Google Scholar 

  86. Glassner A, Eisenhardt M, Kramer B et al (2012) NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest 92(7):967–977

    Article  PubMed  CAS  Google Scholar 

  87. Capece D, Fischietti M, Verzella D et al (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204

    Article  PubMed  CAS  Google Scholar 

  88. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  89. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  CAS  PubMed  Google Scholar 

  90. Leyva-Illades D, McMillin M, Quinn M, Demorrow S (2012) Cholangiocarcinoma pathogenesis: role of the tumor microenvironment. Transl Gastrointest Cancer 1(1):71–80

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368(1):7–13

    Article  CAS  PubMed  Google Scholar 

  92. Gentilini A, Rombouts K, Galastri S et al (2012) Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol 57(4):813–820

    Article  PubMed  CAS  Google Scholar 

  93. Okamoto K, Tajima H, Nakanuma S et al (2012) Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. Int J Oncol 41(2):573–582

    Article  CAS  PubMed  Google Scholar 

  94. Sulpice L, Rayar M, Desille M et al (2013) Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 58(6):1992–2000

    Article  CAS  PubMed  Google Scholar 

  95. Xiao X, Gang Y, Gu Y et al (2012) Osteopontin contributes to TGF-beta1 mediated hepatic stellate cell activation. Dig Dis Sci 57(11):2883–2891

    Article  CAS  PubMed  Google Scholar 

  96. Chuaysri C, Thuwajit P, Paupairoj A, Chau-In S, Suthiphongchai T, Thuwajit C (2009) Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol Rep 21(4):957–969

    CAS  PubMed  Google Scholar 

  97. Okabe H, Beppu T, Hayashi H et al (2009) Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol 16(9):2555–2564

    Article  PubMed  Google Scholar 

  98. Utispan K, Thuwajit P, Abiko Y et al (2010) Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol Cancer 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kim Y, Kim MO, Shin JS et al (2014) Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma. Ann Surg Oncol 21(8):2684–2698

    Article  PubMed  Google Scholar 

  100. Terada M, Horisawa K, Miura S et al (2016) Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma. Sci Rep 6:34691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. El Khatib M, Bozko P, Palagani V, Malek NP, Wilkens L, Plentz RR (2013) Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo. PLoS One 8(10):e77433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Sawitza I, Kordes C, Reister S, Haussinger D (2009) The niche of stellate cells within rat liver. Hepatology 50(5):1617–1624

    Article  CAS  PubMed  Google Scholar 

  103. Fingas CD, Mertens JC, Razumilava N, Bronk SF, Sirica AE, Gores GJ (2012) Targeting PDGFR-beta in cholangiocarcinoma. Liver Int 32(3):400–409

    CAS  PubMed  Google Scholar 

  104. Claperon A, Mergey M, Aoudjehane L et al (2013) Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology 58(6):2001–2011

    Article  CAS  PubMed  Google Scholar 

  105. Ohira S, Sasaki M, Harada K et al (2006) Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. Am J Pathol 168(4):1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jung IH, Kim DH, Yoo DK et al (2018) In vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model. In Vivo 32(4):771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whiteside TL (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22(4):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Subimerb C, Pinlaor S, Khuntikeo N et al (2010) Tissue invasive macrophage density is correlated with prognosis in cholangiocarcinoma. Mol Med Rep 3(4):597–605

    CAS  PubMed  Google Scholar 

  109. Hasita H, Komohara Y, Okabe H et al (2010) Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 101(8):1913–1919

    Article  CAS  PubMed  Google Scholar 

  110. Atanasov G, Hau HM, Dietel C et al (2015) Prognostic significance of macrophage invasion in hilar cholangiocarcinoma. BMC Cancer 15:790

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chang J, Hisamatsu T, Shimamura K et al (2013) Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol Res 43(6):658–669

    Article  PubMed  Google Scholar 

  112. Roos E, Dingemans KP, Van de Pavert IV, Van den Bergh-Weerman MA (1978) Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells. Br J Cancer 38(1):88–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S (1995) In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology 21(2):487–494

    Article  CAS  PubMed  Google Scholar 

  114. Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23(5):1224–1231

    Article  CAS  PubMed  Google Scholar 

  115. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao L, Lim SY, Gordon-Weeks AN et al (2013) Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57(2):829–839

    Article  CAS  PubMed  Google Scholar 

  118. Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26(3):634–642

    Article  CAS  PubMed  Google Scholar 

  119. Shimizu S, Yamada N, Sawada T et al (2000) In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res 91(12):1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Olaso E, Salado C, Egilegor E et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37(3):674–685

    Article  CAS  PubMed  Google Scholar 

  121. Gulubova MV (2004) Collagen type IV, laminin, alpha-smooth muscle actin (alphaSMA), alpha1 and alpha6 integrins expression in the liver with metastases from malignant gastrointestinal tumours. Clin Exp Metastasis 21(6):485–494

    Article  CAS  PubMed  Google Scholar 

  122. Oktar SO, Yucel C, Demirogullari T et al (2006) Doppler sonographic evaluation of hemodynamic changes in colorectal liver metastases relative to liver size. J Ultrasound Med 25(5):575–582

    Article  PubMed  Google Scholar 

  123. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8(1–2):51–58

    Article  CAS  PubMed  Google Scholar 

  125. Levy MT, McCaughan GW, Abbott CA et al (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29(6):1768–1778

    Article  CAS  PubMed  Google Scholar 

  126. Narra K, Mullins SR, Lee HO et al (2007) Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer. Cancer Biol Ther 6(11):1691–1699

    Article  CAS  PubMed  Google Scholar 

  127. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406

    Article  CAS  PubMed  Google Scholar 

  128. Zhuang H, Cao G, Kou C, Liu T (2018) CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep 39(1):21–30

    CAS  PubMed  Google Scholar 

  129. El Khatib M, Kalnytska A, Palagani V et al (2013) Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma. Hepatology 57(3):1035–1045

    Article  PubMed  CAS  Google Scholar 

  130. Wutka A, Palagani V, Barat S et al (2014) Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One 9(4):e95605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Belli C, Trapani D, Viale G et al (2018) Targeting the microenvironment in solid tumors. Cancer Treat Rev 65:22–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Shiraha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiraha, H., Iwamuro, M., Okada, H. (2020). Hepatic Stellate Cells in Liver Tumor. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-37184-5_4

Download citation

Publish with us

Policies and ethics