Skip to main content

A Dimension Conjecture for q-Analogues of Multiple Zeta Values

  • Conference paper
  • First Online:
Periods in Quantum Field Theory and Arithmetic (ICMAT-MZV 2014)

Abstract

We study a class of q-analogues of multiple zeta values given by certain formal q-series with rational coefficients. After introducing a notion of weight and depth for these q-analogues of multiple zeta values we present dimension conjectures for the spaces of their weight- and depth-graded parts, which have a similar shape as the conjectures of Zagier and Broadhurst-Kreimer for multiple zeta values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These type of series are often called modified q-analogues of multiple zeta values, since one needs to multiply by \((1-q)^{s_1+\dots +s_l}\) before taking the limit \(q\rightarrow 1\).

  2. 2.

    Recall the series expansion \(\frac{1}{(1-x)^2} = 1 +2 x+ 3 x^2 + 4 x^3+\dots \) and \(\frac{1}{(1-x)^2} \frac{1+x}{1-x} = 1 +4 x+ 9 x^2 + 16 x^3 + \dots \). Now, since we have \(\sum _{k\ge 0} \dim _{\mathbb Q}( M_{k} ( {\text {SL}}_2({\mathbb Z})) \, x^k =\frac{1}{(1-x^4)(1-x^6)} = ( 1+x^4+ x^6 +x^8 +x^{10}+x^{14}) \frac{1}{(1-x^{12})^2}\), the claim follows by replacing x by \(x^{12}\) in the second series expansion.

  3. 3.

    This follows easily from the fact that \(t^{j-1} (1-t)^{s-j}\) with \(j=1,\dots ,s\) (resp. \(j=2,\dots ,s\)) forms a basis of \(\{ Q \in {\mathbb Q}[t] \mid \deg Q \le s-1 \} \) (resp. \(\{ Q \in t {\mathbb Q}[t] \mid \deg Q \le s-1 \} \)).

  4. 4.

    In the articles [1, 2, 4] these spaces were denoted \({{\,\mathrm{\mathscr {BD}}\,}}\) and \({{\,\mathrm{\mathscr {MD}}\,}}\).

  5. 5.

    Some authors prefer to denote this as the symmetric algebra of a Lie algebra.

  6. 6.

    More precisely, we checked this for a few primes between k and 10007.

References

  1. Bachmann, H.: The algebra of bi-brackets and regularized multiple Eisenstein series. J. Number Theory 200, 260–294 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bachmann, H.: Multiple Eisenstein series and \(q\)-analogues of multiple zeta values, In this volume

    Google Scholar 

  3. Bachmann, H.: Double shuffle relations for q-analogues of multiple zeta values, their derivatives and the connection to multiple Eisenstein series. RIMS Kôyûroku No. 2017, 22–43 (2015)

    Google Scholar 

  4. Bachmann, H., Kühn, U.: The algebra of generating functions for multiple divisor sums and applications to multiple zeta values. Ramanujan J. 40, 605–648 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bradley, D.M.: Multiple q-zeta values. J. Algebra 283, 752–798 (2005)

    Article  MathSciNet  Google Scholar 

  6. Broadhurst, D., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)

    Article  MathSciNet  Google Scholar 

  7. Brown, F.: Mixed Tate motives over \({\mathbb{Z}}\). Ann. Math. (2) 175, 949–976 (2012)

    Google Scholar 

  8. Ecalle, J.: The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles. Asymptotics in dynamics, geometry and PDEs, generalized Borel summation II, 27–211 (2011)

    Google Scholar 

  9. Ebrahimi-Fard, K., Manchon, D., Singer, J.: Duality and (q-)multiple zeta values. Adv. Math. 298, 254–285 (2016)

    Article  MathSciNet  Google Scholar 

  10. Foata, D.: Eulerian polynomials: from Euler’s Time to the Present, The legacy of Alladi Ramakrishnan in the mathematical sciences, pp. 253–273. Springer, New York (2010)

    Google Scholar 

  11. Goncharov, A.B.: Multiple \(\zeta \)-values, Galois groups and geometry of modular varieties. Progr. Math. 201, 361–392 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compositio Math. 142, 307–338 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ihara, K., Ochiai, H.: Symmetry on linear relations for multiple zeta values. Nagoya Math. J. 189, 49–62 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms, The moduli space of curves. Progr. Math. 129, 165–172 (1995)

    MATH  Google Scholar 

  17. Okounkov, A.: Hilbert schemes and multiple \(q\)-zeta values. Funct. Anal. Appl. 48, 138–144 (2014)

    Article  MathSciNet  Google Scholar 

  18. Schlesinger, K.: Some remarks on q-deformed multiple polylogarithms. arXiv:math/0111022 [math.QA]

  19. Schneps, L.: ARI, GARI, Zig and Zag: An introduction to Ecalle’s theory of multiple zeta values. arXiv:1507.01534 [math.NT]

  20. Singer, J.: On q-analogues of multiple zeta values. Funct. Approx. Comment. Math. 53, 135–165 (2015)

    Article  MathSciNet  Google Scholar 

  21. Takeyama, Y.: The algebra of a q-analogue of multiple harmonic series. SIGMA 9 Paper 061, 1–15 (2013)

    Google Scholar 

  22. Ohno, Y., Okuda, J., Zudilin, W.: Cyclic \(q\)- MZSV sum. J. Number Theory 132, 144–155 (2012)

    Google Scholar 

  23. The PARI Group, PARI/GP version 2.10.0, Univ. Bordeaux (2017). http://pari.math.u-bordeaux.fr/

  24. Pupyrev, Y.: On the linear and algebraic independence of q-zeta values, (Russian. Russian summary) Mat. Zametki 78(4), 608–613 (2005); translation in Math. Notes 78(3–4), 563–568 (2005)

    Google Scholar 

  25. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Modular functions of one variable VI, Lecture Notes in Math. 627, Springer, Berlin, 105–169 (1977)

    Google Scholar 

  26. Zagier, D.: Values of zeta functions and their applications. First European Congress of Mathematics, Volume II, Progress in Math. 120, Birkhäuser-Verlag, Basel, 497–512 (1994)

    Google Scholar 

  27. Zhao, J.: Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14(2), 189–221 (2007)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J.: Uniform approach to double shuffle and duality relations of various q-analogs of multiple zeta values via Rota-Baxter algebras. arXiv:1412.8044 [math.NT]

  29. Zudilin, W.: Diophantine problems for q-zeta values, (Russian) Mat. Zametki 72(6), 936–940 (2002); translation in Math. Notes 72, 858–862 (2002)

    Google Scholar 

  30. Zudilin, W.: Algebraic relations for multiple zeta values. Russian Math. Surveys 58(1), 1–29 (2003)

    Article  MathSciNet  Google Scholar 

  31. Zudilin, W.: Multiple \(q\)-zeta brackets, Mathematics 3:1, special issue Mathematical physics, 119–130 (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to thank N. Matthes and the referees for their careful reading of our manuscript and their valuable comments. The first author would also like to thank the Max-Planck Institute for Mathematics in Bonn for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Bachmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bachmann, H., Kühn, U. (2020). A Dimension Conjecture for q-Analogues of Multiple Zeta Values. In: Burgos Gil, J., Ebrahimi-Fard, K., Gangl, H. (eds) Periods in Quantum Field Theory and Arithmetic. ICMAT-MZV 2014. Springer Proceedings in Mathematics & Statistics, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-030-37031-2_9

Download citation

Publish with us

Policies and ethics