Skip to main content

Energy Harvesting Technologies and Market Opportunities

  • Chapter
  • First Online:
  • 900 Accesses

Abstract

Energy harvesting (EH) is a process in which ambient energies are utilized to form effective energies using various advanced techniques. Growing demand for energy in major end-use industries and green powered technologies are expected to drive the overall EH market. Indeed, the significant growth of the market can be attributed to the increasing installation of wireless sensor networks (WSNs) and Internet of Things (IoT) which are expected to boost the EH market through increasing self-powered sensors. In general, this chapter investigates the EH framework based on energy sources and technologies, intelligent solutions, and market opportunities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP:

Access point

BS:

Base station

CH:

Cluster head

D2D:

Device-to-device

EE:

Energy efficiency

EH:

Energy harvesting

HER:

Energy harvesting rate

EHT:

Energy harvesting technology

FIS:

Fuzzy inference system

FQLA:

Fuzzy Q-learning algorithm

HetNet:

Heterogeneous network

ICT:

Information and communication technology

IoT:

Internet of Things

GHG:

Greenhouse gas

M2M:

Machine-to-machine

PS:

Power station

QLA:

Q-learning algorithm

QoS:

Quality of service

RF:

Radio frequency

RL:

Reinforcement learning

RPS:

Renewable power supplier

RES:

Renewable energy source

SG:

Smart grid

WPT:

Wireless power transfer

WSN:

Wireless sensor network

UDN:

Ultradense network

UE:

User equipment

UWB:

Ultrawide band

References

  1. H. Schaffers et al., Smart cities and the future internet: towards cooperation frameworks for open innovation, in The Future Internet, Lect. Notes Comput. Sci., vol. 6656 (2011), pp. 431–446

    Google Scholar 

  2. S. Chen et al., A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 1(4), 349–359 (2014)

    Article  Google Scholar 

  3. O. Vermesan, P. Friess, Internet of Things strategic research and innovation agenda, in Internet of Things—Converging Technologies for Smart Environments and Integrated Ecosystems, (River Publishers, Denmark, 2013)

    Google Scholar 

  4. L. Atzori et al., The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  5. A. Zanella et al., Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  6. S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3), 443–461 (2011)

    Article  Google Scholar 

  7. J.W. Matiko et al., Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 1–25 (2013)

    Google Scholar 

  8. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Perv. Comput. 4, 18–27 (2005)

    Article  Google Scholar 

  9. V. Raghunathan, C. Schurgers, P. Sung, M.B. Srivastava, Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19, 40–50 (2002)

    Article  Google Scholar 

  10. S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, Ph.D. Dissertation, Dept. of EECS, UC Berkeley, May 2003

    Google Scholar 

  11. J. Rabaey, M.J. Ammer, J.L. Silva, D. Patel, S. Roundy, Picaradio supports ad hoc ultra-low power wireless networking. IEEE Comput. 33, 42–48 (2000)

    Article  Google Scholar 

  12. J.H. Kansal, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007)

    Article  Google Scholar 

  13. Microstrain Press Release, Microstrain wins navy contract for developing energy-harvesting wireless sensors (July 2006), http://www.microstrain.com/news/article-65.aspx

  14. J. Ieropoulos, C.M. Greenman, J. Hart, Comparative study of three types of microbial fuel cells. Enzym. Microb. Technol. 37, 238–245 (2005)

    Article  Google Scholar 

  15. Y.K. Tan, LinkedIn SlideShare (2009), [Online], https://de.slideshare.net/tanyenkheng/energyharvesting-presentation-rjc-tyk-2

  16. A.S. Adila, A. Husam, G. Husi, Towards the self-powered Internet of Things (IoT) by energy harvesting: trends and technologies for green IoT, in 2nd IEEE International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (2018) pp. 1–5

    Google Scholar 

  17. P. Kamalinejad et al., Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)

    Article  Google Scholar 

  18. J. Han, J. Hu, Y. Yang, Z. Wang, S.X. Wang, J. He, A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line. IEEE Trans. Ind. Electron. 62(7), 4398–4407 (2015)

    Article  Google Scholar 

  19. B. Fateh, M. Govindarasu, V. Ajjarapu, Wireless network design for transmission line monitoring in smart grid. IEEE Trans. Smart Grid 4(2), 1076–1086 (2013)

    Article  Google Scholar 

  20. J.L. Wardlaw, I. Karaman, A.I. Karsilayan, Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sensors J. 13(2), 709–722 (2013). L. Zhou, A.C. Abraham

    Article  Google Scholar 

  21. S.Y. Tang, S. Chakrabartty, A 5nw quasi-linear CMOS hot-electron injector for self-powered monitoring of biomechanical strain variations. IEEE Trans. Biomed. Circ. Syst. 10(6), 1143–1151 (2016)

    Article  Google Scholar 

  22. C. Zhu, V.C.M. Leung, L. Shu, E.C.-H. Ngai, Green Internet of Things for smart world. IEEE Access 3, 2151–2162 (2015)

    Article  Google Scholar 

  23. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  24. Z. Wang, X. Qin, B. Liu, An energy-efficient clustering routing algorithm for WSN-assisted IoT, in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6

    Google Scholar 

  25. H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Survey of platforms for massive IOT, in 2018 IEEE International Conference on Future IoT Technologies (Future IoT), IEEE, pp. 1–8

    Google Scholar 

  26. T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17(7), 2165–2173 (2017)

    Article  Google Scholar 

  27. F.H. Panahi, A. Falahati, Spectral efficient impulse radio-ultra-wideband transmission model in presence of pulse attenuation and timing jitter. IET Commun. 6(11), 1544–1554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. F.H. Panahi, F.H. Panahi, M. Ghaderzadeh, A. Mohammadisarab, M2M communications as a promising technique to support green powered base stations, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1654–1658

    Google Scholar 

  29. F.H. Panahi, F.H. Panahi, S. Heshmati, T. Ohtsuki, Optimal sleep & wakeup mechanism for green Internet of Things, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1659–1663

    Google Scholar 

  30. F.H. Panahi, P. Hajimirzaee, S. Erfanpoor, F.H. Panahi, T. Ohtsuki, Smart image-processing based energy harvesting for green Internet of Things, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–5

    Google Scholar 

  31. F.H. Panahi, S. Moshirvaziri, A. Momene, F.H. Panahi, T. Ohtsuki, D2D-aided optimal utilization of renewable energies for green powered base stations, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–6

    Google Scholar 

  32. F.H. Panahi, P.F.i.Z.H. Panahi, Spectral-efficient green wireless communications via cognitive UWB signal model. Automatika 57(3), 793–809 (2016)

    Article  Google Scholar 

  33. F.H. Panahi, A. Falahati, Joint IR-UWB power spectral lines and interference suppression based on coded auxiliary independent signaling in presence of pulse attenuation and timing jitter. Wirel. Pers. Commun. 69(4), 1241–1260 (2013)

    Article  Google Scholar 

  34. A. Falahati, F.H. Panahi, Spectrally efficient ultra wideband transmission over wireless sensor networks, in IET Conference on Wireless Sensor Systems (WSS 2012) (2012)

    Google Scholar 

  35. W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, M. Jo, Efficient energy management for the Internet of Things in smart cities. IEEE Commun. Mag. 55(1), 84–91 (2017)

    Article  Google Scholar 

  36. G. Yang, C.K. Ho, Y.L. Guan, Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans. Signal Process. 62(14), 3565–3577 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Lu, P. Wang, D. Niyato, D. In Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)

    Article  Google Scholar 

  38. P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)

    Article  Google Scholar 

  39. D. Vincze, Fuzzy rule interpolation and reinforcement learning, in IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (2017), pp. 000173–000178

    Google Scholar 

  40. F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabric, Green heterogeneous networks via an intelligent sleep/wake-up mechanism and D2D communications. IEEE Trans. Green Commun. Netw. 2(4), 915–931 (2018)

    Article  Google Scholar 

  41. T. Podobnikar, Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sens. 4(3), 784–809 (2012)

    Article  Google Scholar 

  42. G. Han, J. Zhang, X. Mu, Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access 4, 7212–7222 (2016)

    Article  Google Scholar 

  43. C. Qiu, Y. Hu, Y. Chen, B. Zeng, Lyapunov optimization for energy harvesting wireless sensor communications. IEEE Internet Things J. 5(3), 1947–1956 (2018)

    Article  Google Scholar 

  44. Z. Wang, V. Aggarwal, X. Wang, Joint energy-bandwidth allocation in multiple broadcast channels with energy harvesting. IEEE Trans. Commun. 63(10), 3842–3855 (2015)

    Article  Google Scholar 

  45. Z. Ullah, I. Ahmed, T. Ali, N. Ahmad, F. Niaz, Y. Cao, Robust and efficient energy harvested-aware routing protocol with clustering approach in body area networks. IEEE Access 7, 33906–33921 (2019)

    Article  Google Scholar 

  46. J. Liu, C.R. Lin, J. Tsai, Delay and energy tradeoff in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation. IEEE Access 5, 544–564 (2017)

    Article  Google Scholar 

  47. K. Chin, L. Wang, S. Soh, Joint routing and links scheduling in two-tier multi-hop RF-energy harvesting networks. IEEE Commun. Lett. 20(9), 1864–1867 (2016)

    Article  Google Scholar 

  48. H. Zhang, Y. Guo, Z. Zhong, W. Wu, Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks. IEEE Microwave Wireless Compon. Lett. 29(4), 291–293 (2019)

    Article  Google Scholar 

  49. S.H. Kang, J.H. Choi, F.J. Harackiewicz, C.W. Jung, Magnetic resonant three-coil WPT system between off/in-body for remote energy harvest. IEEE Microwave Wireless Compon. Lett. 26(9), 741–743 (2016)

    Article  Google Scholar 

  50. S. Wang, M. Xia, K. Huang, Y. Wu, Wirelessly powered two-way communication with nonlinear energy harvesting model: rate regions under fixed and Mobile relay. IEEE Trans. Wireless Commun. 16(12), 8190–8204 (2017)

    Article  Google Scholar 

  51. Y. Tang, A. Khaligh, A multi-input bridgeless resonant AC–DC converter for electromagnetic energy harvesting. IEEE Trans. Power Electron. 31(3), 2254–2263 (2016)

    Article  Google Scholar 

  52. F.A. Samad, M.F. Karim, V. Paulose, L.C. Ong, A curved electromagnetic energy harvesting system for wearable electronics. IEEE Sensors J. 16(7), 1969–1974 (2016)

    Article  Google Scholar 

  53. Y. Chen, F. Lai, J. You, Analysis of antenna radiation characteristics using a hybrid ray tracing algorithm for indoor WiFi energy-harvesting rectennas. IEEE Access 7, 38833–38846 (2019)

    Article  Google Scholar 

  54. G. Pan, H. Lei, Y. Yuan, Z. Ding, Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans. Commun. 65(5), 2291–2302 (2017)

    Article  Google Scholar 

  55. T. Liu, X. Wang, L. Zheng, A cooperative SWIPT scheme for wirelessly powered sensor networks. IEEE Trans. Commun. 65(6), 2740–2752 (2017)

    Article  Google Scholar 

  56. S. Gong, S. Ma, C. Xing, G. Yang, Optimal beam-forming and time allocation for partially wireless powered sensor networks with downlink SWIPT. IEEE Trans. Signal Process. 67(12), 3197–3212 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Q. Zhao, Y. Shen, M. Li, Control and bidding strategy for virtual power plants with renewable generation and inelastic demand in electricity markets. IEEE Trans. Sustainable Energy 7(2), 562–575 (2016)

    Article  Google Scholar 

  58. J. Knudsen, J. Hansen, A.M. Annaswamy, A dynamic market mechanism for the integration of renewables and demand response. IEEE Trans. Control Syst. Technol. 24(3), 940–955 (2016)

    Article  Google Scholar 

  59. D. Li, W. Saad, I. Guvenc, A. Mehbodniya, F. Adachi, Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans. Commun. 63(6), 2126–2142 (2015)

    Article  Google Scholar 

  60. J. Shen, A. Khaligh, A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transport. Electr. 1(3), 223–231 (2015)

    Article  Google Scholar 

  61. R.H. Byrne, T.A. Nguyen, D.A. Copp, B.R. Chalamala, I. Gyuk, Energy management and optimization methods for grid energy storage systems. IEEE Access 6, 13231–13260 (2018)

    Article  Google Scholar 

  62. I.N. Moghaddam, B.H. Chowdhury, S. Mohajeryami, Predictive operation and optimal sizing of battery energy storage with high wind energy penetration. IEEE Trans. Ind. Electron. 65(8), 6686–6695 (2018)

    Article  Google Scholar 

  63. A.E. Abdulhadi, T.A. Denidni, Self-powered multi-port UHF RFID tag-based-sensor. IEEE J. Radio Freq. Identif. 1(2), 115–123 (2017)

    Article  Google Scholar 

  64. S. Seneviratne et al., A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)

    Article  Google Scholar 

  65. C. Dong, S. Li, R. Han, Q. He, X. Li, D. Xu, Self-powered wireless sensor network using event-triggered energy harvesters for monitoring and identifying intrusion activities. IET Power Electron. 12(8), 2079–2085 (2019)

    Article  Google Scholar 

  66. J. Ikäheimo, E. Pursiheimo, J. Kiviluoma, H. Holttinen, Role of power to liquids and biomass to liquids in a nearly renewable energy system. IET Renew. Power Gener. 13(7), 1179–1189 (2019)

    Article  Google Scholar 

  67. X. Chen, Y. Wang, Q. Wu, A bio-fuel power generation system with hybrid energy storage under a dynamic programming operation strategy. IEEE Access 7, 64966–64977 (2019)

    Article  Google Scholar 

  68. J. Katic, S. Rodriguez, A. Rusu, A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Trans. Power Electron. 33(5), 4125–4134 (2018)

    Article  Google Scholar 

  69. H. Liu, X. Zhao, H. Liang, Z. Li, POMDP-based energy cooperative transmission policy for multiple access model powered by energy harvesting. IEEE Trans. Veh. Technol. 68(6), 5747–5757 (2019)

    Article  Google Scholar 

  70. S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access 4, 5755–5763 (2016)

    Article  Google Scholar 

  71. X. He, H. Jiang, Y. Song, C. He, H. Xiao, Routing selection with reinforcement learning for energy harvesting multi-hop CRN. IEEE Access 7, 54435–54448 (2019)

    Article  Google Scholar 

  72. S. Xiao, X. Zhou, D. Feng, Y. Yuan-Wu, G.Y. Li, W. Guo, Energy-efficient mobile association in heterogeneous networks with device-to-device communications. IEEE Trans. Wirel. Commun. 8, 5260–5271 (2016)

    Article  Google Scholar 

  73. R. Atat, L. Liu, N. Mastronarde, Y. Yi, Energy harvesting-based D2D-assisted machine-type communications. IEEE Trans. Commun. 65(3), 1289–1302 (2017)

    Article  Google Scholar 

  74. F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabrici, Green heterogeneous networks via an intelligent power control strategy and D2D communications, in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC (2017), pp. 1–8

    Google Scholar 

  75. Y. Ma, W. Liang, W. Xu, Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans. Netw. 26(4), 1591–1604 (2018)

    Article  Google Scholar 

  76. R. Deng, S. He, P. Cheng, Y. Sun, Towards balanced energy charging and transmission collision in wireless rechargeable sensor networks. J. Commun. Netw. 19(4), 341–350 (2017)

    Article  Google Scholar 

  77. Y. Shu et al., Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 15(7), 1699–1713 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad H. Panahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panahi, F.H., Panahi, F.H. (2020). Energy Harvesting Technologies and Market Opportunities. In: Nojavan, S., Zare, K. (eds) Electricity Markets. Springer, Cham. https://doi.org/10.1007/978-3-030-36979-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36979-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36978-1

  • Online ISBN: 978-3-030-36979-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics