Skip to main content

Development of Plasma Driven Permeation Measurement System for Plasma Facing Materials

  • Conference paper
  • First Online:
  • 1571 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 101))

Abstract

To study the hydrogen isotopes plasma driven permeation (PDP) behavior in plasma facing materials, a linear Radio Frequency (RF) plasma device has been constructed in the radiation controlled area at Shizuoka University. The deuterium (D) plasma is generated by injecting RF power with the frequency of 13.56 MHz through a copper antenna and confined by DC magnetic field. The sample is sealed by gold (Au) coated O-ring and one side (upstream side) of sample is exposed to the D plasma. The other side of sample, named as downstream side, is pumped out by a turbo molecular pump and a rotary pump. The permeated D through the sample is monitored by a quadrupole mass spectrometer (QMS) which is connected to the downstream chamber. Infrared heater is adopted to control the sample temperature. The PDP experiments under different plasma parameters show that the permeation process agrees with RD regime. The D recombination coefficient on upstream surface of W is obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Costley, A., Hugill, J., Buxton, P.: On the power and size of tokamak fusion pilot plants and reactors. Nucl. Fusion 55, 033001 (2015)

    Article  Google Scholar 

  2. Philipps, V.: Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 415, S2 (2011)

    Article  Google Scholar 

  3. Frauenfelder, R.: Solution and diffusion of hydrogen in tungsten. J. Vac. Sci. Technol. 6, 388 (1969)

    Article  Google Scholar 

  4. Zakharov, A., Sharapov, V., Evko, E.: Hydrogen permeability of polycrystalline and monocrystalline molybdenum and tungsten. Mater. Sci. 9, 149 (1975)

    Article  Google Scholar 

  5. Uemura, Y., et al.: Effect of helium irradiation on deuterium permeation behavior in tungsten. J. Nucl. Mater. 490, 242 (2017)

    Article  Google Scholar 

  6. Lee, H., Markina, E., Ohtsuka, Y., Ueda, Y.: Deuterium ion-driven permeation in tungsten with different microstructures. Phys. Scripta 2011, 014045 (2011)

    Article  Google Scholar 

  7. Lee, H., Tanaka, H., Ohtsuka, Y., Ueda, Y.: Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation. J. Nucl. Mater. 415, S696 (2011)

    Article  Google Scholar 

  8. Gasparyan, Y., Rasinski, M., Mayer, M., Pisarev, A., Roth, J.: Deuterium ion-driven permeation and bulk retention in tungsten. J. Nucl. Mater. 417, 540 (2011)

    Article  Google Scholar 

  9. Nguyen, T.H., Mori, S., Suzuki, M.: Hydrogen permeance and the effect of H2O and CO on the permeability of Pd0.75Ag0.25 membranes under gas-driven permeation and plasma-driven permeation. Chem. Eng. J. 155, 55 (2009)

    Google Scholar 

  10. Ishida, M., Lee, H., Ueda, Y.: The influence of neon or argon impurities on deuterium permeation in tungsten. J. Nucl. Mater. 463, 1062 (2015)

    Article  Google Scholar 

  11. Lee, H., Ishida, M., Ohtsuka, Y., Ueda, Y.: The influence of nitrogen on deuterium permeation through tungsten. Phys. Scripta 2014, 014021 (2014)

    Article  Google Scholar 

  12. Peng, H., Lee, H., Ohtsuka, Y., Ueda, Y.: Ion-driven permeation of deuterium in tungsten by deuterium and carbon-mixed ion irradiation. Phys. Scripta 2011, 014046 (2011)

    Article  Google Scholar 

  13. Joachim, R., Klaus, S.: Hydrogen in tungsten as plasma-facing material. Phys. Scripta 2011, 014031 (2011)

    Google Scholar 

  14. Amemiya, H.: Sheath formation criterion and ion flux for non-Maxwellian plasma. J. Phys. Soc. Jpn. 66, 1335 (1997)

    Article  Google Scholar 

  15. Barada, K.K., Chattopadhyay, P., Ghosh, J., Kumar, S., Saxena, Y.: A linear helicon plasma device with controllable magnetic field gradient. Rev. Sci. Instrum. 83, 063501 (2012)

    Article  Google Scholar 

  16. Hatano, Y., Nakamura, H., Furuya, H., Sugisaki, M.: Influence of surface impurities on plasma-driven permeation of deuterium through nickel. J. Vac. Sci. Technol. Vac. Surf. Films 16, 2078 (1998)

    Article  Google Scholar 

  17. Liu, H.-D., et al.: Deuterium plasma driven permeation behavior in a Chinese reduced activation martensitic/ferritic steel CLF-1. J. Nucl. Mater. 514, 109 (2019)

    Article  Google Scholar 

  18. Zhou, H., Hirooka, Y., Ashikawa, N., Muroga, T., Sagara, A.: Gas-and plasma-driven hydrogen permeation through a reduced activation ferritic steel alloy F82H. J. Nucl. Mater. 455, 470 (2014)

    Article  Google Scholar 

  19. Takagi, I., et al.: Deuterium recombination coefficients on tungsten exposed to RF plasma. J. Nucl. Mater. 417, 564 (2011)

    Article  Google Scholar 

  20. Anderl, R., et al.: Deuterium transport and trapping in polycrystalline tungsten. Fusion Technol. 21, 745 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, M. et al. (2020). Development of Plasma Driven Permeation Measurement System for Plasma Facing Materials. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics