Skip to main content

Inversion, Multiplication and Connection Formulae of Classical Continuous Orthogonal Polynomials

  • Conference paper
  • First Online:
  • 939 Accesses

Abstract

Our main objective is to establish the so-called connection formula,

$$\displaystyle \begin{aligned} p_n(x)=\sum_{k=0}^{n}C_{k}(n)y_k(x), \end{aligned} $$
(0.1)

which for p n(x) = x n is known as the inversion formula

$$\displaystyle \begin{aligned} x^n=\sum _{k=0}^{n}I_{k}(n)y_k(x), \end{aligned} $$

for the family y k(x), where \(\{p_n(x)\}_{n\in \mathbb {N}_0}\) and \(\{y_n(x)\}_{n\in \mathbb {N}_0}\) are two polynomial systems. If we substitute x by ax in the left hand side of (0.1) and y k by p k, we get the multiplication formula

$$\displaystyle \begin{aligned} p_n(ax)=\sum _{k=0}^{n}D_{k}(n,a)p_k(x). \end{aligned} $$

The coefficients C k(n), I k(n) and D k(n, a) exist and are unique since deg p n = n, deg y k = k and the polynomials {p k(x), k = 0, 1, …, n} or {y k(x), k = 0, 1, …, n} are therefore linearly independent. In this session, we show how to use generating functions or the structure relations to compute the coefficients C k(n), I k(n) and D k(n, a) for classical continuous orthogonal polynomials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas. J. Comput. Appl. Math. 136, 152–162 (2001)

    MathSciNet  MATH  Google Scholar 

  2. R. Askey, G. Gasper, Jacobi polynomial expansions of Jacobi polynomials with nonnegative coefficients. Proc. Camb. Philos. Soc. 70, 243–255 (1971)

    Article  Google Scholar 

  3. R. Askey, G. Gasper, Convolution structures for Laguerre polynomials. J. Anal. Math. 31, 48–68 (1977)

    Article  MathSciNet  Google Scholar 

  4. H. Chaggara, W. Koepf, Duplication coefficients via generating functions. Complex Var. Elliptic Equ. 52, 537–549 (2007)

    Article  MathSciNet  Google Scholar 

  5. T. Cluzeau, M. van Hoeij, Computing hypergeometric solutions of linear recurrence equations. Appl. Algebra Eng. Commun. Comput. 17, 83–115 (2006)

    Article  MathSciNet  Google Scholar 

  6. E.H. Doha, H.M. Ahmed, Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials. J. Phys. A 37, 8045–8063 (2004)

    Article  MathSciNet  Google Scholar 

  7. J.L. Fields, J. Wimp, Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15, 390–395 (1961)

    Article  MathSciNet  Google Scholar 

  8. E. Godoy, A. Ronveaux, A. Zarzo, I. Area, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case. J. Comput. Appl. Math. 84, 257–275 (1997)

    Article  MathSciNet  Google Scholar 

  9. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  10. W. Koepf, Hypergeometric Summation—An Algorithmic Approach to Summation and Special Function Identities, 2nd edn. (Springer Universitext, Springer, London, 2014)

    Book  Google Scholar 

  11. W. Koepf, D. Schmersau, Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)

    Article  MathSciNet  Google Scholar 

  12. S. Lewanowicz, The hypergeometric functions approach to the connection problem for the classical orthogonal polynomials. Technical Report, Institute of Computer Science, University of Wroclaw (2003)

    MATH  Google Scholar 

  13. P. Njionou Sadjang, Moments of classical orthogonal polynomials, Ph.D. Dissertation, Universität Kassel (2013)

    MATH  Google Scholar 

  14. M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14, 243–264 (1992)

    Article  MathSciNet  Google Scholar 

  15. M. Petkovšek, H. Wilf, D. Zeilberger, A = B (A. K. Peters, Wellesley, 1996)

    Google Scholar 

  16. E.D. Rainville, Special Functions (The Macmillan Company, New York, 1960)

    MATH  Google Scholar 

  17. A. Ronveaux, A. Zarzo, E. Godoy, Recurrence relations for connection between two families of orthogonal polynomials. J. Comput. Appl. Math. 62, 67–73 (1995)

    Article  MathSciNet  Google Scholar 

  18. J. Sánchez-Ruiz, J.S. Dehesa, Expansions in series of orthogonal hypergeometric polynomials. J. Comput. Appl. Math. 89, 155–170 (1997)

    Article  MathSciNet  Google Scholar 

  19. D.D. Tcheutia, On connection, linearization and duplication coefficients of classical orthogonal polynomials, Ph.D. Dissertation, Universität Kassel (2014)

    Google Scholar 

  20. D.D. Tcheutia, M. Foupouagnigni, W. Koepf, P. Njionou Sadjang, Coefficients of multiplication formulas for classical orthogonal polynomials. Ramanujan J. 39, 497–531 (2016)

    Article  MathSciNet  Google Scholar 

  21. M. van Hoeij, Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure Appl. Algebra 139, 109–131 (1999)

    Article  MathSciNet  Google Scholar 

  22. A. Zarzo, I. Area, E. Godoy, A. Ronveaux, Results for some inversion problems for classical continuous and discrete orthogonal polynomials. J. Phys. A 30, 35–40 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks to the organizers of the AIMS–Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications, Douala, October 5–12, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Duviol Tcheutia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tcheutia, D.D. (2020). Inversion, Multiplication and Connection Formulae of Classical Continuous Orthogonal Polynomials. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36744-2_5

Download citation

Publish with us

Policies and ethics