Skip to main content

On the Simple Layer Potential Ansatz for the n-Dimensional Helmholtz Equation

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Abstract

In the present paper we consider the Dirichlet problem for the n-dimensional Helmholtz equation. In particular we deal with the problem of representability of the solutions by means of simple layer potentials. The main result concerns the solvability of a boundary integral equation of the first kind. Such a result is here obtained by using the theories of differential forms and reducible operators.

To Prof. Luigi Rodino on occasion of his 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Agmon. A representation theorem for solutions of the Helmholtz equation and resolvent estimates for the Laplacian. Analysis, et cetera, (1990), 39–76.

    Google Scholar 

  2. A. Cialdea. On oblique derivate problem for Laplace equation and connected topics. Rend. Accad. Naz. Sci. XL Mem. Mat. (5)12 (1988), no. 1, 181–200.

    MathSciNet  MATH  Google Scholar 

  3. A. Cialdea. The simple layer potential for the biharmonic equation in n variables. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., (9) 2 (1991), 115–127.

    Google Scholar 

  4. A. Cialdea. The Simple-Layer Potential Approach to the Dirichlet Problem: An Extension to Higher Dimensions of Muskhelishvili Method and Applications, in C. Constanda, M. Dalla Riva, P.D. Lamberti, P. Musolino (Eds.), Integral Methods in Science and Engineering, Volume 1, Birkhäuser, (2017) 59–69 .

    Google Scholar 

  5. A. Cialdea, E. Dolce, A. Malaspina, V. Nanni. On an integral equation of the first kind arising in the theory of Cosserat. Intern. J. Math.24 (2013), no. 5, 21 pages.

    Google Scholar 

  6. A. Cialdea, E. Dolce, A. Malaspina. A complement to potential theory in the Cosserat theory. Math. Methods Appl. Sci.38 (2015), no. 3, 537–547.

    Article  MathSciNet  Google Scholar 

  7. A. Cialdea, E. Dolce, V. Leonessa, A. Malaspina. New integral representations in the linear theory of viscoelastic materials with voids. Publ. Math. Inst. (Beograd)110(96) (2014), 49–65.

    Article  MathSciNet  Google Scholar 

  8. A. Cialdea, G.C.Hsiao. Regularization for some boundary integral equations of the first kind in Mechanics. Rend. Accad. Naz. Sci. XL, Serie 5, Mem. Mat. Parte I19 (1995), no. 1, 25–42.

    MathSciNet  MATH  Google Scholar 

  9. A. Cialdea, V. Leonessa, A. Malaspina. Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains. Bound. Value Probl. 2011, 2011:53, 25 pages.

    Google Scholar 

  10. A. Cialdea, V. Leonessa, A. Malaspina. On the Dirichlet and the Neumann problems for Laplace equation in multiply connected domains. Complex Var. Elliptic Equ.57 (2012), no. 10, 1035–1054.

    Article  MathSciNet  Google Scholar 

  11. A. Cialdea, V. Leonessa, A. Malaspina. On the Dirichlet problem for the Stokes system in multiply connected domains. Abstr. Appl. Anal. 2013, Art. ID 765020 (2013), 12 pages.

    Google Scholar 

  12. A. Cialdea, V. Leonessa, A. Malaspina. The Dirichlet problem for second-order divergence form elliptic operators with variable coefficients: the simple layer potential ansatz. Abstr. Appl. Anal. 2015 Art. ID 276810 (2015), 11 pages.

    Google Scholar 

  13. D. Colton, R. Kress. Integral equation methods in scattering theory. Classics in Applied Mathematics, 72 (SIAM), Philadelphia, PA, 2013.

    Google Scholar 

  14. G. Fichera. Una introduzione alla teoria delle equazioni integrali singolari Rend. Mat. Roma, XIX, 17 (1958), 82–191.

    Google Scholar 

  15. A. Malaspina. Regularization for integral equations of the first kind in the theory of thermoelastic pseudo-oscillations. Appl. Math. Inform.9 (2004), 29–51.

    MathSciNet  MATH  Google Scholar 

  16. A. Malaspina. On the traction problem in mechanics. Arch. Mech.57 (2005), no. 6, 479–491.

    MathSciNet  MATH  Google Scholar 

  17. S.G. Mikhlin, S. Prössdorf. Singular Integral Operators. Springer-Verlag: Berlin, 1986.

    Book  Google Scholar 

  18. N.I. Muskhelishvili. Singular integral equations. Boundary problems of functions theory and their applications to mathematical physics. Revised translation from the Russian, edited by J. R. M. Radok. Reprinted. Wolters-Noordhoff Publishing, Groningen, 1972.

    Google Scholar 

  19. A. Nachman. Reconstructions from boundary measurements. Ann. of Math. (2) 128 (1988), no. 3, 531–576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Malaspina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cialdea, A., Leonessa, V., Malaspina, A. (2020). On the Simple Layer Potential Ansatz for the n-Dimensional Helmholtz Equation. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_9

Download citation

Publish with us

Policies and ethics