Skip to main content

Pharmacokinetic Modelling to Study the Biodistribution of Nanoparticles

  • Chapter
  • First Online:
Mucosal Delivery of Drugs and Biologics in Nanoparticles

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 41))

Abstract

Pharmacokinetics is a key component of pharmacology and is an essential aspect during drug discovery and development phases that evaluates the safety and efficacy profiles. Mathematical models mainly physiologically based pharmacokinetic (PBPK) models have been increasingly used that can help in drug screening and identification; dose optimisation prior to preclinical and clinical trials using in vitro data, thus saving time and resources. PBPK models describe the pharmacokinetic processes – absorption, distribution, metabolism and elimination (ADME) using various mathematical correlations including in vitro – in vivo extrapolations in humans. Nanoparticles are been increasingly used for drug delivery due to their advantages over conventional formulations such as enhanced absorption, longer half-life, good safety and efficacy, targeted delivery etc. However, studies using nanoparticles in humans can be associated with various obstacles including ethical and logistical, hindering the drug development process. PBPK models overcome the earlier mentioned problems and can evaluate various biological and molecular processes that define drug pharmacokinetics using in vitro data. This chapter summarises the approach of PBPK models, its challenges and possibilities to assess the key ADME mechanisms involved during various mucosal routes of administration using several allometric, anthropometric and rate equations to inform drug pharmacokinetics in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratain MJ, P.W.J., Principles of pharmacokinetics, in Holland-Frei cancer medicine, P.R. Kufe DW, Weichselbaum RR, et al., Editor. 2003, Hamilton (ON): BC Decker.

    Google Scholar 

  2. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rizk M, et al. Importance of drug pharmacokinetics at the site of action. Clin Transl Sci. 2017;10(3):133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamimi NAM, Ellis P. Drug development: from concept to marketing! Nephron Clin Pract. 2009;113(3):c125–31.

    Article  CAS  PubMed  Google Scholar 

  5. Ruane PJ, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of Tenofovir Alafenamide as 10-day monotherapy in HIV-1-positive adults. J Acquir Immune Defic Syndr. 2013;63(4):449–55.

    Article  CAS  PubMed  Google Scholar 

  6. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  7. Peters SA. Variability, uncertainty, and sensitivity analysis. In: Physiologically-based pharmacokinetic (PBPK) modeling and simulations: Wiley; 2012. p. 161–81.

    Google Scholar 

  8. Teorell, T., Kinetics of distribution of substances administered to the body I the extravascular modes of administration. Archives Internationales De Pharmacodynamie Et De Therapie. 1937;57: p. 205–225.

    Google Scholar 

  9. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51(1):45–73.

    Article  CAS  PubMed  Google Scholar 

  10. European Medicines Agency Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and SIMULATION 2016., http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/07/WC500211315.pdf.

  11. United States Food and Drug Administration. Guidance for Industry: physiologically Based Pharmacokinetic Analyses—Format and Content. 2016 last update [cited Access 2016.; Available from: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM531207.pdf.

  12. Wagner C, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):226–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dolgin E. Long-acting HIV drugs advanced to overcome adherence challenge. Nat Med. 2014;20:323–4.

    Article  CAS  PubMed  Google Scholar 

  14. Sager JE, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bosgra S, et al. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.

    Article  PubMed  Google Scholar 

  16. Salamat, M., et al., Anthropometric predictive equations for estimating body composition. Adv Biomed Res.2015;4(1): p. 34–34.

    Google Scholar 

  17. Alexis F, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chillistone S, Hardman JG. Factors affecting drug absorption and distribution. Anaesth Intensive Care Med. 2017;18(7):335–9.

    Article  Google Scholar 

  19. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting Oral drug absorption. AAPS J. 2009;11(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  21. Bergström CAS, et al. Absorption classification of oral drugs based on molecular surface properties. J Med Chem. 2003;46(4):558–70.

    Article  CAS  PubMed  Google Scholar 

  22. Bakshi RP, et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat Commun. 2018;9(1):315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41–67.

    Article  CAS  PubMed  Google Scholar 

  24. Ensign LM, et al. Mucus Penetrating Nanoparticles: Biophysical Tool and Method of Drug and Gene Delivery. Adv Mater (Deerfield Beach, Fla). 2012;24(28):3887–94.

    Article  CAS  Google Scholar 

  25. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–76.

    Article  CAS  PubMed  Google Scholar 

  26. Gertz M, et al. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    Article  CAS  PubMed  Google Scholar 

  27. Winiwarter S, et al. Correlation of human Jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem. 1998;41(25):4939–49.

    Article  CAS  PubMed  Google Scholar 

  28. Sun D, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19(10):1400–16.

    Article  CAS  PubMed  Google Scholar 

  29. Xia B, et al. Development of a novel oral cavity compartmental absorption and transit model for sublingual administration: illustration with zolpidem. AAPS J. 2015;17(3):631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Löndahl J, et al. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv. 2014;27(4):229–54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jaworski J, Redlarski G. A compartment model of alveolar–capillary oxygen diffusion with ventilation–perfusion gradient and dynamics of air transport through the respiratory tract. Comput Biol Med. 2014;51:159–70.

    Article  PubMed  Google Scholar 

  32. Yu J. A subcellular compartmental modeling approach to pulmonary drug development. In: Medicinal Chemistry: The University of Michigan; 2011.

    Google Scholar 

  33. Bolger, M.B., et al. Fluorometholone Ocular Suspension PBPK simulations using the OCAT™ model in GastroPlus™. In GTCBio Ocular Disease Conference. 2012. San Francisco, CA.

    Google Scholar 

  34. Kay K, et al. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations. Br J Clin Pharmacol. 2018;84(9):1950–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56.

    Article  CAS  PubMed  Google Scholar 

  36. Li M, et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J. 2017;19(1):26–42.

    Article  CAS  PubMed  Google Scholar 

  37. Vilanova O, et al. Understanding the kinetics of protein–nanoparticle corona formation. ACS Nano. 2016;10(12):10842–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almeida JPM, et al. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6(5):815–35.

    Article  CAS  PubMed  Google Scholar 

  39. McDonald TO, et al. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation. Adv Healthc Mater. 2014;3(3):400–11.

    Article  CAS  PubMed  Google Scholar 

  40. Reszka R, et al. Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice. J Pharmacol Exp Ther. 1997;280(1):232–7.

    CAS  PubMed  Google Scholar 

  41. Evans MV, et al. A physiologically based pharmacokinetic model for intravenous and ingested Dimethylarsinic acid in mice. Toxicol Sci. 2008;104(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  42. Peters S. Evaluation of a generic physiologically based pharmacokinetic model for Lineshape analysis. Clin Pharmacokinet. 2008;47(4):261–75.

    Article  CAS  PubMed  Google Scholar 

  43. Thompson MD, Beard DA. Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J Pharmacokinet Pharmacodyn. 2011;38(4):405–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rekić D, et al. In silico prediction of efavirenz and rifampicin drug–drug interaction considering weight and CYP2B6 phenotype. Br J Clin Pharmacol. 2011;71(4):536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33(9):1304–11.

    Article  CAS  PubMed  Google Scholar 

  46. Yildirimer L, et al. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ravindran S, et al. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr Drug Metab. 2018;19(4):327–34.

    Article  CAS  PubMed  Google Scholar 

  48. Kadam RS, Bourne DWA, Kompella UB. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab Dispos. 2012;40(7):1380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyake M, et al. Evaluation of intestinal metabolism and absorption using the ussing chamber system equipped with intestinal tissue from rats and dogs. Eur J Pharm Biopharm. 2018;122:49–53.

    Article  CAS  PubMed  Google Scholar 

  50. Shebley M, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88–110.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li M, et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J. 2017;19(1):26–42.

    Article  CAS  PubMed  Google Scholar 

  52. Yuan D, et al. Physiologically based pharmacokinetic modeling of nanoparticles. J Pharm Sci. 2019;108(1):58–72.

    Article  CAS  PubMed  Google Scholar 

  53. Bachler G, von Goetz N, Hungerbuhler K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine. 2013;8:3365–82.

    PubMed  PubMed Central  Google Scholar 

  54. Bachler G, von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 2015;9(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Singh SK. In silico-in vitro-in vivo studies of experimentally designed carvedilol loaded silk fibroin-casein nanoparticles using physiological based pharmacokinetic model. Int J Biol Macromol. 2017;96:403–20.

    Article  CAS  PubMed  Google Scholar 

  56. Jung F, et al. A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. Eur J Pharm Biopharm. 2018;127:462–70.

    Article  CAS  PubMed  Google Scholar 

  57. Moss DM, et al. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies. Expert Opin Drug Metab Toxicol. 2015;11(8):1203–17.

    Article  CAS  PubMed  Google Scholar 

  58. Kiser JJ, et al. Isoniazid pharmacokinetics, pharmacodynamics and dosing in south African infants. Ther Drug Monit. 2012;34(4):446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171(17):3963–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajith K. R. Rajoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajoli, R.K.R. (2020). Pharmacokinetic Modelling to Study the Biodistribution of Nanoparticles. In: Muttil, P., Kunda, N. (eds) Mucosal Delivery of Drugs and Biologics in Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-35910-2_11

Download citation

Publish with us

Policies and ethics