Skip to main content

Clinical Trials: Handling the Data

  • Chapter
  • First Online:
Clinical Trials

Part of the book series: Success in Academic Surgery ((SIAS))

  • 2007 Accesses

Abstract

Clinical trials play an important role in establishing the efficacy of different surgical interventions. It is important to understand the methodological considerations that are inherent to the design, analysis, and reporting of surgical trials. This chapter reviews the essentials that surgical investigators need to know in order to handle data from clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7.

    Article  CAS  Google Scholar 

  2. Ionnidis JPA. Retiring statistical significance would give bias a free pass. Nature. 2019;567(7749):461.

    Article  Google Scholar 

  3. Ioannidis JPA. The proposal to lower P value thresholds to .005. JAMA. 2018;319(14):1429–30.

    Article  Google Scholar 

  4. Chavalarias D, Wallach JD, Li AHT, Ioannidis JPA. Evolution of reporting P values in the biomedical literature, 1990-2015. JAMA. 2016;315(11)

    Google Scholar 

  5. Norton EC, Dowd BE, Maciejewski ML. Odds ratios: current best practices and use. JAMA. 2018;320(1):84–5.

    Article  Google Scholar 

  6. Norton EC, Dowd BE. Log odds and the interpretation of logit models. Health Serv Res. 2018;53(2):859–78.

    Article  Google Scholar 

  7. Norton EC, Miller MM, Kleinman LC. Computing adjusted risk ratios and risk differences in Stata. Stata J. 2013;13(3):492–509.

    Article  Google Scholar 

  8. Uno H, Claggett B, Tian L, et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J Clin Oncol. 2014;32(22):2380–5.

    Article  Google Scholar 

  9. Weir IR, Marshall GD, Schneider JI, et al. Interpretation of time-to-event outcomes in randomized trials: an online randomized experiment. Ann Oncol. 2019;30(1):96–102.

    Article  CAS  Google Scholar 

  10. Saquib N, Saquib J, Ioannidis JP. Practices and impact of primary outcome adjustment in randomized controlled trials: meta-epidemiologic study. BMJ. 2013;347:f4313.

    Article  Google Scholar 

  11. Kasenda B, Schandelmaier S, Sun X, et al. Subgroup analyses in randomised controlled trials: cohort study on trial protocols and journal publications. BMJ. 2014;g4539:349.

    Google Scholar 

  12. Wallach JD, Sullivan PG, Trepanowski JF, Sainani KL, Steyerberg EW, Ioannidis JP. Evaluation of evidence of statistical support and corroboration of subgroup claims in randomized clinical trials. JAMA Intern Med. 2017;177(4):554–60.

    Article  Google Scholar 

  13. Oxman AD, Guyatt GH. A consumer’s guide to subgroup analyses. Ann Intern Med. 1992;116(1):78–884.

    Article  CAS  Google Scholar 

  14. Newgard GD, Lewis RJ. Missing data: how to best account for what is not known. JAMA. 2015;314(9):940–1.

    Article  CAS  Google Scholar 

  15. Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. Wiley: Princeton, NJ; 2002.

    Book  Google Scholar 

  16. Royston P. Multiple imputation of missing values. Stata J. 2004;4(3):227–41.

    Article  Google Scholar 

  17. Peng L, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling missing data. JAMA. 2015;314(18):1966–7.

    Article  Google Scholar 

  18. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8:206–13.

    Article  Google Scholar 

  19. Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the consequences of treatment. N Engl J Med. 1988;318:1728–33.

    Article  CAS  Google Scholar 

  20. McAlister FA. The “number needed to treat” turns 20—and continues to be used and misused. CMAJ. 2008;179(6):549–53.

    Article  Google Scholar 

  21. Tignanelli CJ, Napolitano LM. The fragility index in randomized clinical trials as a means of optimizing patient care. JAMA Surg. 2018.

    Google Scholar 

  22. ClinCalc LLC. Fragility index calculator. http://clincalc.com/Stats/FragilityIndex.aspx. Published 2018. Accessed 2 Apr.

  23. Schulz KF, Altman DG, Moher D, Guyatt GH. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332.

    Article  Google Scholar 

  24. Begg C, Cho M, Eastwood S, et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA. 1996;276(8):637–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Brooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swords, D.S., Brooke, B.S. (2020). Clinical Trials: Handling the Data. In: Pawlik, T., Sosa, J. (eds) Clinical Trials. Success in Academic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-35488-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35488-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35487-9

  • Online ISBN: 978-3-030-35488-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics