Skip to main content

Parametric Shape Descriptor Based on a Scalable Boundary-Skeleton Model

  • Conference paper
  • First Online:
Intelligent Data Processing (IDP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 794))

  • 180 Accesses

Abstract

A parametric shape descriptor based on the relation between contour convexities and skeleton’s branches of a shape is suggested. The descriptor contains the set of a polygonal figure convex vertices approximating a raster image and estimations of significance for curvature features corresponding to the vertices. The estimations are calculated with use of a boundary-skeleton shape models family generated by the polygonal figure. The applications of the suggested shape descriptor to the face profile line segmentation and content based image retrieval are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, S., Mokhtarian, F., Kittler, J.: Curvature scale space image in shape similarity retrieval. Multimedia Syst. (1999). https://doi.org/10.1007/s005300050147

    Article  Google Scholar 

  2. Achermann, B.: University of Bern face database. Copyright 1995, University of Bern, all rights reserved (1995). ftp://iamftp.unibe.ch/pub/Images/FaceImages/

    Google Scholar 

  3. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)

    Article  Google Scholar 

  4. Bartolini, I., Ciaccia, P., Patella, M.: Query processing issues in region-based image databases. Knowl. Inf. Syst. (2010). https://doi.org/10.1007/s10115-009-0257-4

    Article  Google Scholar 

  5. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 135–143. MIT Press (1967)

    Google Scholar 

  6. Dudek, G., Tsotsos, J.K.: Shape representation and recognition from multiscale curvature. Comput. Vis. Image Underst. 68(2), 170–189 (1997). https://doi.org/10.1006/cviu.1997.0533

    Article  Google Scholar 

  7. Galton, A., Meathrel, R.: Qualitative outline theory. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1061–1066 (1999). http://dl.acm.org/citation.cfm?id=1624312.1624370

  8. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984). https://doi.org/10.1016/0010-0277(84)90022-2

    Article  Google Scholar 

  9. Koplowitz, J., Plante, S.: Corner detection for chain coded curves. Pattern Recogn. 28(6), 843–852 (1995). https://doi.org/10.1016/0031-3203(94)00100-Z

    Article  Google Scholar 

  10. Latecki, L.J., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000). https://doi.org/10.1109/34.879802

    Article  Google Scholar 

  11. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423 (2001). https://doi.org/10.1109/ICCV.2001.937655

  12. Mestetskii, L.M., Reyer, I.A.: Continuous skeletal representation of image with controllable accuracy. In: Proceedings of International Conference on Graphicon-2003, pp. 246–249 (2003, in Russian)

    Google Scholar 

  13. Pantic, M., Rothkrantz, L.J.M.: Facial action recognition for facial expression analysis from static face images. IEEE Trans. Syst. Man Cybern. 34, 1449–1461 (2004). https://doi.org/10.1109/TSMCB.2004.825931

    Article  Google Scholar 

  14. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000). https://doi.org/10.1109/34.879790

    Article  Google Scholar 

  15. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998). https://doi.org/10.1016/S0262-8856(97)00070-X

    Article  Google Scholar 

  16. Preparata, F., Shamos, M.: Computational Geometry. Springer, New York (1985)

    Book  Google Scholar 

  17. Ray, B.K., Pandyan, R.: ACORD - an adaptive corner detector for planar curves. Pattern Recogn. 36(3), 703–708 (2003). https://doi.org/10.1016/S0031-3203(02)00084-5

    Article  MATH  Google Scholar 

  18. Rosin, P.L.: Multiscale representation and matching of curves using codons. CVGIP: Graph. Models Image Process. 55(4), 286–310 (1993). https://doi.org/10.1006/cgip.1993.1020

    Article  Google Scholar 

  19. Zhukova, K.V., Reyer, I.A.: Parametric family of boundary-skeletal shape models. In: Proceedings of 14-th Russian Conference on Mathematical Methods for Pattern Recognition (MMPR-14), pp. 346–350 (2009). (in Russian)

    Google Scholar 

  20. Zhukova, K.V., Reyer, I.A.: Structure analysis of object shape with use of skeleton core. In: Proceedings of 8-th International Conference on Intelligent Information Processing (IIP-08), pp. 350–354 (2010). (in Russian)

    Google Scholar 

  21. Zhukova, K.V., Reyer, I.A.: Parametric family of skeleton bases of a polygonal figure. Mach. Learn. Data Anal. 1(4), 391–410 (2012). (in Russian)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Foundation for Basic Research (projects No. 14-07-00736, 17-07-01432, 17-20-02222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Reyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyer, I., Aminova, K. (2019). Parametric Shape Descriptor Based on a Scalable Boundary-Skeleton Model. In: Strijov, V., Ignatov, D., Vorontsov, K. (eds) Intelligent Data Processing. IDP 2016. Communications in Computer and Information Science, vol 794. Springer, Cham. https://doi.org/10.1007/978-3-030-35400-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35400-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35399-5

  • Online ISBN: 978-3-030-35400-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics