Skip to main content

The Bone Biology and the Nanotechnology for Bone Engineering and Bone Diseases

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

The issues about the biology of bone tissue fascinate every researcher in the health area. Bone is a vital tissue and has a great mechanical strength and a remarkable resilience due to the compounds of its extracellular matrix. The bone matrix with organic and inorganic compounds is the starting point for the researchers who investigate the range of biomaterials applied in grafting procedures. Biomaterials are now produced at the nanoscale to work as a scaffold and facilitate bone repair, in an option to the autogenous graft. Different nanomaterials are being studied to apply in the treatment of various bone diseases including cancer. Nanomaterials as nanocarriers of drugs are being regarded as the safest system to treat cancer of bones, considering no side effects and tumor cells precision. Therefore, this chapter emphasizes all mechanisms of bone biology regarding healing and bone repair after application of nanomaterials, and also discusses the advancement of nanotechnology research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abazari MF, Nejati F, Nasiri N, Khazeni ZAS, Nazari B, Enderami SE, Mohajerani H (2019) Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 720:144096–144102

    Article  CAS  PubMed  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointgration. Eur Spine J 10(2):S96–S101

    PubMed  PubMed Central  Google Scholar 

  • Aluigi A, Ballestri M, Guerrini A, Sotgiu G, Ferroni C, Corticelli F, Gariboldi MB, Monti E, Varchi G (2018) Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumor activity. Mater Sci Eng C Mater Biol Appl 1(90):476–484

    Article  CAS  Google Scholar 

  • Bonzi G, Salmaso S, Scomparin A, Eldar-Boock A, Satchi-Fainaro R, Caliceti P (2015) Novel pullulan bioconjugate for selective breast cancer bone metastases treatment. Bioconjug Chem 26(3):489–501

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter A, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 5:371–386

    Google Scholar 

  • Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12

    Article  CAS  PubMed  Google Scholar 

  • Chou YF, Huang W, Dunn JC, Miller TA, Wu BM (2007) The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. J Biomed Mater Res A 80(1):206–215

    Google Scholar 

  • Ciapetti G, Granchi D, Devescovi V, Baglio SR, Leonardi E, Martini D, Jurado MJ, Olalde B, Armentano I, Kenny JM, Walboomers FX, Alava JI, Baldini N (2012) Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Int J Mol Sci 13(2):2439–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della-Valle C, Visai L, Santin M, Cigada A, Candiani G, Pezzoli D, Arciola CR, Imbriani M, Chiesa R (2012) A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs 35:864–875

    Article  CAS  PubMed  Google Scholar 

  • Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86(1):77–91

    Article  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F (2008) Regulation of bone remodeling by the central and peripheral nervous system. Biophysics 473(2):231–236

    CAS  Google Scholar 

  • Elias CMV, Maia-Filho ALM, Silva LR, Amaral FPM, Webster TJ, Marciano FR, Lobo AO (2019) In vivo evaluation of the genotoxic effects of poly (butylene adipate-co-terephthalate)/polypyrrole with nanohydroxyapatite scaffolds for bone regeneration. Materials 12:1330–1345

    Article  CAS  PubMed Central  Google Scholar 

  • Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10:334–438

    Article  PubMed Central  CAS  Google Scholar 

  • Everts V, Delaissé JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17(1):77–99

    Article  CAS  PubMed  Google Scholar 

  • Ferreira L, Squier T, Park H, Choe H, Kohane DS, Langer R (2008) Human embryoid bodies containing nano- and microparticulate delivery vehicles. Adv Mater 20(12):2285–2291

    Article  CAS  Google Scholar 

  • Garino N, Sanvitale P, Dumontel B, Laurenti M, Colilla M, Izquierdo-Barba I, Cauda V, Vallet-Regi M (2019) Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv 9:11312–11321

    Article  CAS  PubMed  Google Scholar 

  • Geiger BC, Wang S, Padera RF Jr, Grodzinsky AJ, Hammond PT (2018) Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med 28(10):469–488

    Google Scholar 

  • Gerstenfeld LC, Culliname DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884

    Article  CAS  PubMed  Google Scholar 

  • Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11):1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Greiner JFW, Gottschalk M, Fokin N, Büker B, Kaltschmidt C, Hütten A, Kaltschmidt B (2019) Natural and synthetic nanopores directing osteogenic differentiation of human stem cells. Nanomedicine 17:319–328

    Article  CAS  PubMed  Google Scholar 

  • Griffin MF, Kalaskar DM, Seifalian A, Butler PE (2016) An update on the application of nanotechnology in bone tissue engineering. Open Orthop J 10(3):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106(6):2139–2151

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Meng Z, Chen G, Xie D, Wang H, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng A 18(11–12):1239–1252

    Article  CAS  Google Scholar 

  • Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2019) Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials 9:1089–1119

    Article  CAS  PubMed Central  Google Scholar 

  • Harvey EJ, Henderson JE, Vengallatore ST (2010) Nanotechnology and bone healing. J Orthop Trauma 24:25–30

    Article  Google Scholar 

  • Hu F, Zhou Z, Xu Q, Fan C, Wang L, Ren H, Xu S, Ji Q, Chen X (2019) A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int J Biol Macromol 129(15):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:131–138

    Article  CAS  Google Scholar 

  • Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B (2008) Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 47:66–73

    Article  CAS  PubMed  Google Scholar 

  • Jell G, Minelli C, Stevens M (2009) Biomaterial-related approaches: surface structuring. In: Fundamentals of tissue engineering and regenerative medicine. Springer, New York, pp 469–484

    Chapter  Google Scholar 

  • Johnson LC (1966) The kinetics of skeletal remodeling. Birth Defects Orig Artic Ser 2(1):66–142

    Google Scholar 

  • Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY (2005) A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26:6314–6322

    Article  CAS  PubMed  Google Scholar 

  • Kennedy OD, Herman DM, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2012) Activation of resorption in fastigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50(5):1115–1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587

    Article  CAS  PubMed  Google Scholar 

  • Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823

    Article  CAS  PubMed  Google Scholar 

  • Kneser U, Schaefer DG, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Kose N, Çalak R, PekÅŸen C, Kiremitçi A, Burukoglu D, Koparal S, DoÄŸan A (2016) Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: in vivo study. Injury 47:320–324

    Article  PubMed  Google Scholar 

  • Kovács D, Igaz N, Keskeny C, Bélteky P, Tóth T, Gáspar R, Madarász D, Rázga Z, Kónya Z, Boros IM, Kiricsi M (2016) Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci Rep 13(6):27902–27914

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:6–10

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q (2017) Engineering multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29:1605754–1605760

    Article  CAS  Google Scholar 

  • Li L, Zhang R, Gu W, Xu ZP (2018) Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. Nanomedicine 14(7):2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19(1):1–19

    Article  Google Scholar 

  • Liu J, Zeng Y, Shi S, Xu L, Zhang H, Pathak JL, Pan Y (2017) Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int J Nanomedicine 12:3561–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S (2019) Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 14:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HD, Zhao HQ, Wang K, Liv LL (2011) Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharmacol 420:358–365

    Article  CAS  Google Scholar 

  • Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M (2019) Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater 96:547–556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Mitri FF, Ingle AP, Rai M (2018) Nanotechnology in the management of bone diseases and as regenerative medicine. Curr Nanosci 14:95–103

    Article  CAS  Google Scholar 

  • Mokhtari MJ, Koohpeima F, Mohammadi H (2017) A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer. Chem Biol Drug Des 90(4):618–628

    Article  CAS  PubMed  Google Scholar 

  • Moore C, Kosgodage U, Lange S, Inal J (2017) The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer 141:428–436

    Article  CAS  PubMed  Google Scholar 

  • Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and release in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270

    Article  CAS  PubMed  Google Scholar 

  • Peng KT, Chiang YC, Huang TY, Chen PC, Chang PJ, Lee CW (2019) Curcumin nanoparticles are a promising anti-bacterial and anti-inflammatory agent for treating periprosthetic joint infections. Int J Nanomedicine 14:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabbhakaran MP, Venugal J, Ramakrishna S (2009) Electrospun nanostructured sacaffolds for bone tissue engineering. Acta Biomater 5:2884–2893

    Article  CAS  Google Scholar 

  • Qadri S, Haik Y, Mensah-Brown E, Bashir G, Fernandez-Cabezudo MJ, Al-Ramadi BK (2017) Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine 13:2241–2250

    Article  CAS  PubMed  Google Scholar 

  • Raghavendran HRB, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T (2014) A comparative study on in vivo osteogenic priming potential for electron spun scaffold PLLA/HA/Col, PLLA/Col for tissue engineering application. PLoS One 9(8):e104389

    Article  CAS  Google Scholar 

  • Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  CAS  PubMed  Google Scholar 

  • Scheller EL, Krebsbach PH, Kohn DH (2009) Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 36:368–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeman E, Delmas PD (2006) Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261

    Article  CAS  PubMed  Google Scholar 

  • Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6(1–4):205–216

    Article  CAS  Google Scholar 

  • Slane J, Vivanco J, Rose W, Ploeg HL, Squire M (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver particles. Mater Sci Eng C 48:188–196

    Article  CAS  Google Scholar 

  • Spin-Neto R, Stravopoulos A, Dias-Pereira LA, Marcantonio-Junior E, Wenzel A (2013) Fate of autologous and fresh-frozen allogenic block bone grafts used for ridge augmentation. A CBCT-based analysis. Clin Oral Implants Res 24:167–173

    Article  PubMed  Google Scholar 

  • Sun W, Han Y, Li Z, Ge K, Zhang J (2016) Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir 32(36):9237–9244

    Article  CAS  PubMed  Google Scholar 

  • Tejinder S, Veerpal K, Manish K, Prabhjot K, Murthy RSR, Rawal RK (2015) The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 23:1–15

    Article  CAS  Google Scholar 

  • Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater 84:34–48

    Article  CAS  PubMed  Google Scholar 

  • Villaverde G, Nairi V, Baeza A, Vallet-Regi M (2017) Double sequential encrypted targeting sequence: a new concept for bone cancer treatment. Chemistry 23(30):7174–7179

    Article  CAS  PubMed  Google Scholar 

  • Wamsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC (2015) Nanotechnology in bone tissue engineering. Nanomedicine 11(5):1253–1263

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yu B, Fan Y, Ormsby RW, McCarthy H, Dunne N, Li X (2019) Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater Sci Eng C Mater Biol Appl 103:109823–109835

    Article  CAS  PubMed  Google Scholar 

  • Webster TJ (2017) IJN’s second year is now a part of nanomedicine history. Neuropsychiatr Dis Treat 2:1–2

    Google Scholar 

  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Ma PX (2004) Structure and properties of nanohydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  CAS  PubMed  Google Scholar 

  • Weinstein S, Toker IA, Emmanuel R, Ramishetti S, Hazan-Halevy I, Rosenblum D, Goldsmith M, Abraham A, Benjamini O, Bairey O, Raanani P, Nagler A, Lieberman J, Peer D (2016) Harnessing RNAi-based nanomedicines for therapeutic gene silencing I B-cells malignancies. Proc Natl Acad Sci U S A 113:16–22

    Article  CAS  Google Scholar 

  • Wu AC, Morrison NA, Kelly WL, Forwood MR (2013) MCP-1 expression is specifically regulated during activation on skeletal repair and remodeling. Calcif Tissue Int 92(6):566–575

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Liu R, Huang Q (2007) Preparation and characterization of nano-hydroxyapatite/polymers increase osteoblast attachment. Int J Nanomedicine 2:487–492

    Google Scholar 

  • Yang F, Both SK, Yang X, Walboomers F, Jansen JA (2009) Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater 5:3295–3304

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, Wang H, Zhang Y, Zheng Z, Ting K, Wang C, Liu Y (2019) Nanosilver/poly (DL-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoconductivity. Int J Nanomedicine 14:1849–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80

    Article  CAS  Google Scholar 

  • Zhang ZG, Li ZH, Mao XZ (2011) Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63:439–443

    Article  CAS  Google Scholar 

  • Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G (2018) Mesemchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer 9(17):3129–3137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Franceschini Mitri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitri, F.F., Ingle, A.P. (2020). The Bone Biology and the Nanotechnology for Bone Engineering and Bone Diseases. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_13

Download citation

Publish with us

Policies and ethics