Skip to main content

Principles of Safe Stereotactic Trajectories

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 960 Accesses

Abstract

Stereotactic planning plays a pivotal role in various neurosurgical procedures including deep brain stimulation (DBS), depth electrode placement, and stereoencephalography (sEEG) for intracranial monitoring in patients with epilepsy, responsive neurostimulation (RNS), laser interstitial thermal therapy (LITT), and biopsies. Presurgical planning is essential to success. This requires a thorough knowledge of clinical presentation, medical history, risk factors, results of preoperative studies, and possible benefits and hazards of surgery. Integration of this knowledge with an understanding of key principles of trajectory planning allows for deep structures of the brain to be approached safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke RH, Horsley V. THE CLASSIC: On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J. 1906;1799–1800.

    Google Scholar 

  2. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

    CAS  PubMed  Google Scholar 

  3. Guiot G, Hardy J, Albe-Fessard D. Precise delimitation of the subcortical structures and identification of thalamic nuclei in man by stereotactic electrophysiology. Neurochirurgia (Stuttg). 1962;5:1–18.

    CAS  Google Scholar 

  4. Zrinzo LU, Hariz MI. Recording in functional neurosurgery. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer; 2009. p. 1325–30.

    Chapter  Google Scholar 

  5. Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology. 2018;60(11):1151–8.

    Article  PubMed  Google Scholar 

  6. Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64(4):754–62; discussion 762–3.

    Article  PubMed  Google Scholar 

  7. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.

    Article  PubMed  Google Scholar 

  8. Baron TH, Kamath PS, McBane RD. Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med. 2013;368(22):2113–24.

    Article  CAS  PubMed  Google Scholar 

  9. Hornor MA, Duane TM, Ehlers AP, Jensen EH, Brown PS, Pohl D, et al. American College of Surgeons’ Guidelines for the Perioperative Management of Antithrombotic Medication. J Am Coll Surg. 2018;227(5):521–536.e1.

    Article  PubMed  Google Scholar 

  10. Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2suppl):e326–50.

    Article  CAS  Google Scholar 

  11. Doherty JU, Gluckman TJ, Hucker WJ, Januzzi JL, Ortel TL, Saxonhouse SJ, et al. 2017 ACC expert consensus decision pathway for periprocedural management of anticoagulation in patients with nonvalvular atrial fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol. 2017;69:871–98.

    Article  PubMed  Google Scholar 

  12. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–52.

    Article  PubMed  Google Scholar 

  13. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/ AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:77–137.

    Article  Google Scholar 

  14. Roth A, Buttrick SS, Cajigas I, Jagid JR, Ivan ME. Accuracy of frame-based and frameless systems for deep brain stimulation: a meta-analysis. J Clin Neurosci. 2018;57:1–5.

    Article  PubMed  Google Scholar 

  15. Mavridis I, Boviatsis E, Anagnostopoulou S. Anatomy of the human subthalamic nucleus: a combined morphometric study. Anat Res Int. 2013;2013:319710.

    PubMed  PubMed Central  Google Scholar 

  16. Walton L, Hampshire A, Forster DM, Kemeny AA. Stereotactic localization with magnetic resonance imaging: a phantom study to compare the accuracy obtained using two-dimensional and three-dimensional data acquisitions. Neurosurgery. 1997;41(1):131–7; discussion 137–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sumanaweera TS, Glover GH, Hemler PF, van den Elsen PA, Martin D, Adler JR, Napel S. MR geometric distortion correction for improved frame-based stereotaxic target localization accuracy. Magn Reson Med. 1995;34(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  18. Sumanaweera TS, Adler JR Jr, Napel S, Glover GH. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery. 1994;35(4):696–703; discussion 703–4.

    Article  CAS  PubMed  Google Scholar 

  19. Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):1745–56.

    Article  PubMed  Google Scholar 

  20. Bucholz RD, Ho HW, Rubin JP. Variables affecting the accuracy of stereotactic localization using computerized tomography. J Neurosurg. 1993;79(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  21. Nowell M, Rodionov R, Diehl B, Wehner T, Zombori G, Kinghorn J, et al. A novel method for implementation of frameless StereoEEG in epilepsy surgery. Neurosurgery. 2014;10:525–34.

    PubMed  Google Scholar 

  22. Gilard V, Proust F, Gerardin E, Lebas A, Chastan N, Fréger P, et al. Usefulness of multidetector-row computerized tomographic angiography for the surgical planning in stereoelectroencephalography. Diagn Interv Imaging. 2016;97:333–7.

    Article  CAS  PubMed  Google Scholar 

  23. Sato S, Dan M, Hata H, Miyasaka K, Hanihara M, Shibahara I, et al. Safe stereotactic biopsy for basal ganglia lesions: avoiding injury to the basal perforating arteries. Stereotact Funct Neurosurg. 2018;96(4):244–8.

    Article  PubMed  Google Scholar 

  24. Yu C, Petrovich Z, Apuzzo ML, Luxton G. An image fusion study of the geometric accuracy of magnetic resonance imaging with the Leksell stereotactic localization system. J Appl Clin Med Phys. 2001;2(1):42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sankar T, Lozano AM. Magnetic resonance imaging distortion in functional neurosurgery. World Neurosurg. 2011;75:29–31.

    Article  Google Scholar 

  26. O’Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K. CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg. 2009;87(4):205–10.

    Article  PubMed  Google Scholar 

  27. Elias WJ, Sansur CA, Frysinger RC. Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg. 2009;110(2):201–7.

    Article  PubMed  Google Scholar 

  28. Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, et al. Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg. 2009;110(6):1283–90.

    Article  PubMed  Google Scholar 

  29. Khan MF, Mewes K, Gross RE, Skrinjar O. Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg. 2008;86(1):44–53.

    Article  PubMed  Google Scholar 

  30. Lehtimäki K, Coenen VA, Gonçalves Ferreira A, Boon P, Elger C, Taylor RS, et al. The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the International Multicenter Registry (MORE). Neurosurgery. 2019;84(1):141–50.

    Article  PubMed  Google Scholar 

  31. Khan S, Javed S, Park N, Gill SS, Patel NK. A magnetic resonance imaging-directed method for transventricular targeting of midline structures for deep brain stimulation using implantable guide tubes. Neurosurgery. 2010;66(6 Suppl Operative):234–7; discussion 237.

    PubMed  Google Scholar 

  32. Reinges MH, Krings T, Nguyen HH, Hans FJ, Korinth MC, Holler M, et al. Is the head position during preoperative image data acquisition essential for the accuracy of navigated brain tumor surgery? Comput Aided Surg. 2000;5(6):426–32.

    Article  CAS  PubMed  Google Scholar 

  33. Marmulla R, Mühling J, Lüth T, Hassfeld S. Physiological shift of facial skin and its influence on the change in precision of computer-assisted surgery. Br J Oral Maxillofac Surg. 2006;44(4):273–8.

    Article  PubMed  Google Scholar 

  34. Smith TR, Mithal DS, Stadler JA, Asgarian C, Muro K, Rosenow JM. Impact of fiducial arrangement and registration sequence on target accuracy using a phantom frameless stereotactic navigation model. J Clin Neurosci. 2014;21(11):1976–80.

    Article  PubMed  Google Scholar 

  35. Rohlfing T, Maurer CR Jr, Dean D, Maciunas RJ. Effect of changing patient position from supine to prone on the accuracy of a Brown-Roberts-Wells stereotactic head frame system. Neurosurgery. 2003;52(3):610–8; discussion 617–8.

    Article  PubMed  Google Scholar 

  36. Zhou C, Anschuetz L, Weder S, Xie L, Caversaccio M, Weber S. Surface matching for high-accuracy registration of the lateral skull base. Int J Comput Assist Radiol Surg. 2016;11(11):2097–103.

    Article  PubMed  Google Scholar 

  37. Salma A, Makiese O, Sammet S, Ammirati M. Effect of registration mode on neuronavigation precision: an exploration of the role of random error. Comput Aided Surg. 2012;17(4):172–8.

    Article  PubMed  Google Scholar 

  38. Ammirati M, Gross JD, Ammirati G, Dugan S. Comparison of registration accuracy of skin- and bone-implanted fiducials for frameless stereotaxis of the brain: a prospective study. Skull Base. 2002;12(3):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alterman RL, Sterio D, Beric A, Kelly PJ. Microelectrode recording during posteroventral pallidotomy: impact on target selection and complications. Neurosurgery. 1999;44:315–23.

    Article  CAS  PubMed  Google Scholar 

  40. Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, Benabid AL. Deep brain stimulation for Parkinson’s disease: surgical issues. Mov Disord. 2006;21(Suppl 14):197–218.

    Article  Google Scholar 

  41. Palur RS, Berk C, Schulzer M, Honey CR. A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg. 2002;96:1058–62.

    Article  PubMed  Google Scholar 

  42. Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72:157–69.

    Article  CAS  PubMed  Google Scholar 

  43. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32.

    Article  PubMed  Google Scholar 

  44. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. The Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–63.

    Article  CAS  PubMed  Google Scholar 

  45. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37:357–66.

    Article  PubMed  Google Scholar 

  46. Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir. 2012;154:2069–74.

    Article  CAS  PubMed  Google Scholar 

  47. Amundson EW, McGirt MJ, Olivi A. A contralateral, transfrontal, extraventricular approach to stereotactic brainstem biopsy procedures. Technical note. J Neurosurg. 2005;102(3):565–70.

    Article  PubMed  Google Scholar 

  48. Gonçalves-Ferreira AJ, Herculano-Carvalho M, Pimentel J. Stereotactic biopsies of focal brainstem lesions. Surg Neurol. 2003;60(4):311–20.

    Article  PubMed  Google Scholar 

  49. Dellaretti M, Reyns N, Touzet G, Dubois F, Gusmão S, Pereira JL, et al. Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact Funct Neurosurg. 2012;90(2):79–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen L. Air .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, R., Air, E.L. (2020). Principles of Safe Stereotactic Trajectories. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics