Skip to main content

Deep Learning for Breast Region and Pectoral Muscle Segmentation in Digital Mammography

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11854))

Included in the following conference series:

Abstract

The accurate segmentation of a mammogram into different anatomical regions, such as breast or pectoral muscle, is a critical step in automated breast image analysis. This paper evaluates the performance of u-net deep learning architecture on segmenting breast area and pectoral muscle from digital mammograms and digital breast tomosynthesis. To minimise the image variations due to vendor and modality specifications, Volpara\(^\text {TM}\) algorithm was used to normalise the raw image to a unity representation that is independent of imaging conditions. Four factors and their interactions were investigated for their effects on the performance of u-net segmentation: image normalisation; zero and extrapolated padding techniques for image size standarisation; different contrast between breast and background; and image resolution. By training u-net on 2,000 normalised images, we obtained median dice-similarity coefficients of 0.8879 and 0.9919, respectively for pectoral and breast segmentations from 825 testing images. The model training speed was boosted by using down sampled images without compromising segmentation accuracy. Using normalised breast images by Volpara\(^\text {TM}\) algorithm, u-net was able to perform robust segmentation of breast area and pectoral muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, C.K., Heo, C., Jin, H., Kim, J.H.: A novel deep learning-based approach to high accuracy breast density estimation in digital mammography. In: Armato, S.G., Petrick, N.A. (eds.) Medical Imaging 2017: Computer-Aided Diagnosis (2017)

    Google Scholar 

  2. Ariaratnam, N.S., Little, S.T., Whitley, M.A., Ferguson, K.: Digital breast tomosynthesis vacuum assisted biopsy for tomosynthesis-detected sonographically occult lesions. Clin. Imaging 47, 4–8 (2018)

    Article  Google Scholar 

  3. Camilus, K.S., Govindan, V.K., Sathidevi, P.S.: Computer-aided identification of the pectoral muscle in digitized mammograms. J. Digit. Imaging 23(5), 562–580 (2009)

    Article  Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Chen, Z., Zwiggelaar, R.: Segmentation of the breast region with pectoral muscle removal in mammograms (2010)

    Google Scholar 

  6. Ekpo, E.U., McEntee, M.F.: Measurement of breast density with digital breast tomosynthesis—a systematic review. Br. J. Radiol. 87(1043), 20140460 (2014)

    Google Scholar 

  7. Ferrari, R., Rangayyan, R., Desautels, J., Borges, R., Frere, A.: Automatic identification of the pectoral muscle in mammograms. IEEE Trans. Med. Imaging 23(2), 232–245 (2004)

    Article  Google Scholar 

  8. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining, vol. 72. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10247-4

  9. Highnam, R., Brady, M.: Mammographic Image Analysis. Computational Imaging and Vision. Springer, Netherlands (1999). https://doi.org/10.1007/978-94-011-4613-5

  10. Kallenberg, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Article  Google Scholar 

  11. Kwok, S., Chandrasekhar, R., Attikiouzel, Y.: Automatic pectoral muscle segmentation on mammograms by straight line estimation and cliff detection. In: The Seventh Australian and New Zealand Intelligent Information Systems Conference (2001)

    Google Scholar 

  12. Li, S., et al.: Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Phys. Med. Biol. 63(2), 025005 (2018)

    Google Scholar 

  13. Liu, L., Liu, Q., Lu, W.: Pectoral muscle detection in mammograms using local statistical features. J. Digit. Imaging 27(5), 633–641 (2014)

    Article  Google Scholar 

  14. Mohamed, A.A., Berg, W.A., Peng, H., Luo, Y., Jankowitz, R.C., Wu, S.: A deep learning method for classifying mammographic breast density categories. Med. Phys. 45(1), 314–321 (2017)

    Article  Google Scholar 

  15. Mustra, M., Grgic, M.: Robust automatic breast and pectoral muscle segmentation from scanned mammograms. Sig. Process. 93(10), 2817–2827 (2013)

    Article  Google Scholar 

  16. Oliver, A., Llado, X., Torrent, A., Marti, J.: One-shot segmentation of breast, pectoral muscle, and background in digitised mammograms. In: IEEE International Conference on Image Processing (2014)

    Google Scholar 

  17. Petersen, K., Chernoff, K., Nielsen, M., Ng, A.: Breast density scoring with multiscale denoising autoencoders. In: MICCAI Workshop on Sparsity Techniques in Medical Imaging (2012)

    Google Scholar 

  18. Raba, D., Oliver, A., Martí, J., Peracaula, M., Espunya, J.: Breast segmentation with pectoral muscle suppression on digital mammograms. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 471–478. Springer, Heidelberg (2005). https://doi.org/10.1007/11492542_58

    Chapter  Google Scholar 

  19. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 4165 (2018)

    Google Scholar 

  20. Rodriguez-Ruiz, A., et al.: Pectoral muscle segmentation in breast tomosynthesis with deep learning. In: Mori, K., Petrick, N. (eds.) Medical Imaging 2018: Computer-Aided Diagnosis (2018)

    Google Scholar 

  21. Ronneberger, O.: U-net: Convolutional networks for biomedical image segmentation. https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/. Accessed 05 Jul 2019

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Smith, A.P., Niklason, L., Ren, B., Wu, T., Ruth, C., Jing, Z.: Lesion visibility in low dose tomosynthesis. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 160–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11783237_23

    Chapter  Google Scholar 

  24. Spak, D., Plaxco, J., Santiago, L., Dryden, M., Dogan, B.: BI-RADs fifth edition: a summary of changes. Diagn. Intervent. Imaging 98(3), 179–190 (2017)

    Article  Google Scholar 

  25. Suckling, J.H., et al.: Mammographic image analysis society (MIAS) database v1.21 (2015)

    Google Scholar 

  26. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

  27. Tabik, S., Peralta, D., Herrera-Poyatos, A., Herrera, F.: A snapshot of image pre-processing for convolutional neural networks: case study of MNIST. Int. J. Comput. Intell. Syst. 10(1), 555 (2017)

    Google Scholar 

  28. Tzikopoulos, S.D., Mavroforakis, M.E., Georgiou, H.V., Dimitropoulos, N., Theodoridis, S.: A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Comput. Methods Programs Biomed. 102(1), 47–63 (2011)

    Article  Google Scholar 

  29. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  30. Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. CVGIP: Image Underst. 55(1), 14–26 (1992)

    Google Scholar 

  31. Wirth, M., Stapinski, A.: Segmentation of the breast region in mammograms using snakes. In: IEEE First Canadian Conference on Computer and Robot Vision (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaier Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Khan, N., Chan, A., Dunne, J., Highnam, R. (2019). Deep Learning for Breast Region and Pectoral Muscle Segmentation in Digital Mammography. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34879-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34878-6

  • Online ISBN: 978-3-030-34879-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics