Skip to main content

An Analysis of Evolutionary Algorithms for Multiobjective Optimization of Structure and Learning of Fuzzy Cognitive Maps Based on Multidimensional Medical Data

  • Conference paper
  • First Online:
Book cover Theory and Practice of Natural Computing (TPNC 2019)

Abstract

The paper concerns the use of evolutionary algorithms to solve the problem of multiobjective optimization and learning of fuzzy cognitive maps (FCMs) on the basis of multidimensional medical data related to diabetes. The aim of this research study is an automatic construction of a collection of FCM models based on various criteria depending on the structure of the model and forecasting capabilities. The simulation analysis was performed with the use of the developed multiobjective Individually Directional Evolutionary Algorithm. Experiments show that the collection of fuzzy cognitive maps, in which each element is built on the basis of particular patient data, allows us to receive higher forecasting accuracy compared to the standard approach. Moreover, by appropriate aggregation of these collections we can also obtain satisfactory accuracy of forecasts for the new patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, S.M.: Cognitive-map-based decision analysis based on NPN logics. Fuzzy Sets Syst. 71(2), 153–163 (1995)

    Article  MathSciNet  Google Scholar 

  2. Chernorutsky, I.G.: Methods of optimization in control theory. Peter, St. Petersburg (2010) (in Russian)

    Google Scholar 

  3. Chi, Y., Liu, J.: Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm. IEEE Trans. Fuzzy Syst. 24(1), 71–81 (2016)

    Article  Google Scholar 

  4. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017)

    Article  Google Scholar 

  5. Dickerson, J.A., Kosko, B.: Fuzzy virtual worlds as fuzzy cognitive maps. Presence 3, 173–189 (1994)

    Article  Google Scholar 

  6. Falcon, R., Napoles, G., Bello, R., Vanhoof, K.: Granular cognitive maps: a review. Granul. Comput. 4(3), 451–467 (2019)

    Article  Google Scholar 

  7. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Inteligence, 3rd edn. Wiley, Hoboken (2006)

    Google Scholar 

  8. Homenda, W., Jastrzebska, A., Pedrycz, W.: Nodes selection criteria for fuzzy cognitive maps designed to model time series. In: Filev, D., et al. (eds.) Intelligent Systems 2014. AISC, vol. 323, pp. 859–870. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11310-4_75

    Chapter  Google Scholar 

  9. Kahn, M.: UCI Machine Learning Repository, Washington University, St. Louis, MO. http://archive.ics.uci.edu/ml. Accessed 3 Aug 2019

  10. Kolahdoozi, M., Amirkhani, A., Shojaeefard, M.H., Abraham, A.: A novel quantum inspired algorithm for sparse fuzzy cognitive maps learning. Appl. Intell. 49(10), 3652–3667 (2019)

    Article  Google Scholar 

  11. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)

    Article  Google Scholar 

  12. Kreinovich, V., Stylios, C.: Why fuzzy cognitive maps are efficient. Int. J. Comput. Commun. Control 10(5), 825–833 (2015). Special issue on Fuzzy Sets and Applications

    Google Scholar 

  13. Kubuś, Ł.: Individually directional evolutionary algorithm for solving global optimization problems-comparative study. Int. J. Intell. Syst. Appl. (IJISA) 7(9), 12–19 (2015)

    Google Scholar 

  14. Kubuś, Ł., Poczeta, K., Yastrebov, A.: A new learning approach for fuzzy cognitive maps based on system performance indicators. In: 2016 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1398–1404 (2016)

    Google Scholar 

  15. Mateou, N.H., Andreou, A.S.: Tree-structured multi-layer fuzzy cognitive maps for modelling large scale, complex problems. In: 2005 Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, pp. 133–141 (2005)

    Google Scholar 

  16. Papageorgiou, E.I., Poczeta, K.: A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks. Neurocomputing 232, 113–121 (2017)

    Article  Google Scholar 

  17. Papakostas, G.A., Koulouriotis, D.E., Polydoros, A.S., Tourassis, V.D.: Towards Hebbian learning of fuzzy cognitive maps in pattern classification problems. Expert Syst. Appl. 39, 10620–10629 (2012)

    Article  Google Scholar 

  18. Peng, Z., Wu, L., Chen, Z.: NHL and RCGA based multi-relational fuzzy cognitive map modeling for complex systems. Appl. Sci. 5(4), 1399–1411 (2015)

    Article  Google Scholar 

  19. Poczeta, K., Kubus, L., Yastrebov, A.: Analysis of an evolutionary algorithm for complex fuzzy cognitive map learning based on graph theory metrics and output concepts. BioSystems 179, 39–47 (2019)

    Article  Google Scholar 

  20. Poczeta, K., Kubuś, Ł., Yastrebov, A.: An evolutionary algorithm based on graph theory metrics for fuzzy cognitive maps learning. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M.A. (eds.) TPNC 2017. LNCS, vol. 10687, pp. 137–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71069-3_11

    Chapter  MATH  Google Scholar 

  21. Rutkowski, L.: Methods and Techniques of Artificial Intelligence (in Polish). Wydawnictwo Naukowe PWN, Warsaw (2005)

    Google Scholar 

  22. Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowl.-Based Syst. 105, 29–37 (2016)

    Article  Google Scholar 

  23. Salmeron, J.L., Papageorgiou, E.I.: Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control. Appl. Intell. 41, 223–234 (2014)

    Article  Google Scholar 

  24. Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algortihms, pp. 93–100 (1985)

    Google Scholar 

  25. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Article  MathSciNet  Google Scholar 

  26. Stach, W., Pedrycz, W., Kurgan, L.A.: Learning of fuzzy cognitive maps using density estimate. IEEE Trans. Syst. Man Cybern. Part B 42(3), 900–912 (2012)

    Article  Google Scholar 

  27. Słoń, G.: Application of models of relational fuzzy cognitive maps for prediction of work of complex systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 307–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_27

    Chapter  Google Scholar 

  28. Wu, K., Liu, J.: Learning large-scale fuzzy cognitive maps based on compressed sensing and application in reconstructing gene regulatory networks. IEEE Trans. Fuzzy Syst. 25(6), 1546–1560 (2017)

    Article  Google Scholar 

  29. Yastrebov, A., Gad, S., SŁoń, S.: Bank of artificial neural networks MLP type in symptom systems of technical diagnostics. Pol. J. Environ. Stud. 17(2A), 118–123 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Poczeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yastrebov, A., Kubuś, Ł., Poczeta, K. (2019). An Analysis of Evolutionary Algorithms for Multiobjective Optimization of Structure and Learning of Fuzzy Cognitive Maps Based on Multidimensional Medical Data. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2019. Lecture Notes in Computer Science(), vol 11934. Springer, Cham. https://doi.org/10.1007/978-3-030-34500-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34500-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34499-3

  • Online ISBN: 978-3-030-34500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics