Skip to main content

Human Activities Recognition Using Accelerometer and Gyroscope

  • Conference paper
  • First Online:
Ambient Intelligence (AmI 2019)

Abstract

Plenty of supervised machine learning techniques that use accelerometer and gyroscope signals for automatic Human Activity Recognition (HAR) has been proposed in the last decade. According to recent studies, the combination of accelerometer and gyroscope signals, also called multimodal recognition, increases the accuracy in HAR with respect to the use of each signal alone. This paper presents the results of an analysis we performed in order to compare the effectiveness of machine learning techniques when used separately or jointly on accelerometer and gyroscope signals. We compare SVM and \(k-\)NN classifiers (combined with hand-crafted features) with a deep residual network using three publicly available datasets. The results show that the use of deep learning techniques in multimodal mode (i.e., using accelerometer and gyroscope signals jointly) outperforms other strategies of at least 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cloud.google.com.

  2. 2.

    https://aws.amazon.com/.

  3. 3.

    https://azure.microsoft.com.

  4. 4.

    We describe the extraction of features from the accelerometer or gyroscope signals.

References

  1. Acampora, G., Cook, D., Rashidi, P., Vasilakos, A.: A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)

    Article  Google Scholar 

  2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN13) (2013)

    Google Scholar 

  3. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6, 64270–64277 (2018)

    Article  Google Scholar 

  4. Bianco, S., Napoletano, P., Schettini, R.: Multimodal car driver stress recognition. In: Proceedings of the EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth19) (2019)

    Google Scholar 

  5. Ferrari, A., Micucci, D., Marco, M., Napoletano, P.: A framework for long-term data collection to support automatic human activity recognition. In: Proceedings of the Intelligent Environments (IE) Work on Reliable Intelligent Environment (WoRIE19) (2019)

    Google Scholar 

  6. Ferrari, A., Micucci, D., Marco, M., Napoletano, P.: Hand-crafted features vs residual networks for human activities recognition using accelerometer. In: Proceedings of the IEEE International Symposium on Consumer Technologies (ISCT19) (2019)

    Google Scholar 

  7. Ferrari, A., Micucci, D., Marco, M., Napoletano, P.: On the homogenization of heterogeneous inertial-based databases for human activity recognition. In: Proceedings of IEEE Services Work on Big Data for Public Health Policy Making (2019)

    Google Scholar 

  8. Grossi, G., Lanzarotti, R., Napoletano, P., Noceti, N., Odone, F.: Positive technology for elderly well-being: a review. Pattern Recogn. Lett. (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR16) (2016)

    Google Scholar 

  10. Malekzadeh, M., Clegg, R.G., Cavallaro, A., Haddadi, H.: Protecting sensory data against sensitive inferences. In: Proceedings of the Workshop on Privacy by Design in Distributed Systems (W-P2DS18) (2018)

    Google Scholar 

  11. Micucci, D., Mobilio, M., Napoletano, P.: Unimib shar: a dataset for human activity recognition using acceleration data from smartphones. Appl. Sci. 7(10), 1101 (2017)

    Article  Google Scholar 

  12. Micucci, D., Mobilio, M., Napoletano, P., Tisato, F.: Falls as anomalies? an experimental evaluation using smartphone accelerometer data. J. Ambient Intell. Humaniz. Comput. 8(1), 87–99 (2017)

    Article  Google Scholar 

  13. Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)

    Article  Google Scholar 

  14. Twomey, N., et al.: Comprehensive study of activity recognition using accelerometers. Informatics 5(2), 27 (2018)

    Article  Google Scholar 

  15. Vavoulas, G., Chatzaki, C., Malliotakis, T., Pediaditis, M., Tsiknakis, M.: The mobiact dataset: recognition of activities of daily living using smartphones. In: Proceedings of Information and Communication Technologies for Ageing Well and e-Health (ICT4AgeingWell16) (2016)

    Google Scholar 

  16. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Napoletano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrari, A., Micucci, D., Mobilio, M., Napoletano, P. (2019). Human Activities Recognition Using Accelerometer and Gyroscope. In: Chatzigiannakis, I., De Ruyter, B., Mavrommati, I. (eds) Ambient Intelligence. AmI 2019. Lecture Notes in Computer Science(), vol 11912. Springer, Cham. https://doi.org/10.1007/978-3-030-34255-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34255-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34254-8

  • Online ISBN: 978-3-030-34255-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics