Skip to main content

Transportation Processes Modelling in Congested Road Networks

  • Chapter
  • First Online:
  • 878 Accesses

Part of the book series: Springer Tracts on Transportation and Traffic ((STTT,volume 15))

Abstract

In this chapter, the models of different transportation processes in a congested road network are considered. The first section is devoted to a signal control problem formulated as a bi-level optimization program. An analytical solution for a two-commodity linear road network offers a practical and illustrative result to be taken into consideration by decision-makers in this sphere. A new algorithm for OD-matrix estimation based on the dual traffic assignment problem is described in the second section. The third section is devoted to the problem of emission reduction. The approaches presented in this book are shown to be well-implemented for coping with such problems. The time-depended vehicle routing problem in a congested road network is considered in the last section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allsop RE, Charlesworth JA (1977) Traffic in signal-controlled road network: an example of different signal timings inducing different routings. Traffic Eng Control 18:118–132

    Google Scholar 

  2. Smith MJ, Vuren T (1993) Traffic equilibrium with responsive traffic control. Transp Sci 27(2):118–132

    Article  MATH  Google Scholar 

  3. Wong SC (1995) Derivatives of the performance index for the traffic model from TRANSYT. Transp Res Part B 29(5):303–327

    Article  Google Scholar 

  4. Clegg J, Smith MJ, Xiang Y, Yarrow R (2001) Bilevel programming applied to optimizing urban transportation. Transp Res Part B 35(1):41–70

    Article  Google Scholar 

  5. Yang H, Yagar S (1995) Traffic assignment and signal control in saturated road networks. Transp Res Part A 29(2):125–139

    Article  Google Scholar 

  6. Dempe S (2002) Foundations of bilevel programming. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  7. Bard JF (2002) Practical bi-level optimization: algorithms and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  8. U.S. Bureau of Public Roads, editor. Traffic Assignment Manual. U.S. Department of Commerce, Washington, D.C. (1964)

    Google Scholar 

  9. Krylatov AY, Zakharov VV, Malygin IG (2015) Signal control in a congested traffic area. In: 2015 International Conference on “Stability and Control Processes” in Memory of V.I. Zubov (SCP), pp 475–478

    Google Scholar 

  10. Hazelton M (2001) Inference for origin-destination matrices: estimation, prediction and reconstruction. Transp Res Part B 35:667–676

    Article  Google Scholar 

  11. Yang H, Sasaki T, Iida Y, Asakura Y (1992) Estimation of origin-destination matrices from link traffic counts on congested networks. Transp Res Part B 26(6):417–434

    Article  Google Scholar 

  12. Bianco L, Cerrone C, Cerulli R, Gentili M (2014) Locating sensors to observe network arc flows: exact and heuristic approaches. Comput Oper Res 46:12–22

    Article  MathSciNet  MATH  Google Scholar 

  13. Bierlaire M (2002) The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables. Transp Res Part B 36:282–298

    Article  Google Scholar 

  14. Castillo E, Menedez JM, Jimenez P (2008) Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transp Res Part B 42:455–481

    Article  Google Scholar 

  15. Medina A, Taft N, Salamatian K, Bhattacharyya S, Diot C (2002) Traffic matrix estimation: existing techniques and new directions. In: Proceedings of the 2002 SIGCOMM conference on computer communication review, vol 32, pp 161–174

    Article  Google Scholar 

  16. Minguez R, Sanchez-Cambronero S, Castillo E, Jimenez P (2010) Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks. Transp Res Part B 44:282–298

    Article  Google Scholar 

  17. Zakharov V, Krylatov A (2014) OD-matrix estimation based on plate scanning. In: Veremey EI (ed) 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA), pp 209–210

    Google Scholar 

  18. Krylatov AYu, Shirokolobova AP, Zakharov VV (2016) OD-matrix estimation based on a dual formulation of traffic assignment problem. Informatica (Slovenia) 40(4):393–398

    MathSciNet  Google Scholar 

  19. Proposal for a regulation of the European parliament and of the Council - Setting Emission Performance Standards for New Passenger Cars as Part of the Community’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles. Commission of the European Communities, Dossier COD/2007/0297 (2007)

    Google Scholar 

  20. Krautzberger L, Wetzel H (2012) Transport and CO\(_2\): productivity growth and carbon dioxide emissions in the european commercial transport industry. Environ Resour Econ 53:435–454

    Article  Google Scholar 

  21. Most carmakers must further improve carbon efficiency by 2015 (Retrieved September 28, 2012) European Environment Agency (2011) — URL: http://www.eea.europa.eu/highlights/most-carmakers-must-further-improve/ (date: 01.05.2015)

  22. U.S. Transportation Sector Greenhouse Gas Emissions: 1990–2011. EPA, U. – Office of Transportation and Air Quality. – EPA-420-F-13-033a (2013)

    Google Scholar 

  23. CO\(_2\) emissions from fuel combustions. International Energy Agency (2012)

    Google Scholar 

  24. Ahn K, Rakha HA (2013) Network-wide impacts of eco-routing strategies: a large-scale case study. Transp Res Part D Transp Environ 25:119–130

    Article  Google Scholar 

  25. Ahn K, Rakha HA (2008) The effects of route choice decisions on vehicle energy consumption and emissions. Transp Res Part D Transp Environ 13(3):151–167

    Article  Google Scholar 

  26. Aziz HMA, Ukkusuri SV (2014) Exploring the trade-off between greenhouse gas emissions and travel time in daily travel decisions: route and departure time choices. Transp Res Part D 32:334–353

    Article  Google Scholar 

  27. Boriboonsomsin K, Barth MJ, Weihua Z, Vu A (2012) Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Trans Intell Transp Syst 13(4):1694–1704

    Article  Google Scholar 

  28. Guo L, Huang S, Sadek AW (2012) An evaluation of environmental benefits of time-dependent green routing in the greater Buffalo Niagara region. J Intell Transp Syst 17(1):18–30

    Article  Google Scholar 

  29. Hensher DA (2008) Climate change, enhanced greenhouse gas emissions and passenger transport what can we do to make a difference? Transp Res Part D Transport Environ 13(2):95–111

    Article  Google Scholar 

  30. Stanley JK, Hensher DA, Loader C (2011) Road transport and climate change: stepping off the greenhouse gas. Transp Res Part A Policy Pract 45(10):1020–1030

    Article  Google Scholar 

  31. Ben-Akiva M, De Palma A, Isam K (1991) Dynamic network models and driver information systems. Transp Res Part A General 25(5):251–266

    Article  Google Scholar 

  32. Gaker D, Vautin D, Vij A, Walker JL (2011) The power and value of green in promoting sustainable transport behavior. Environ Res Lett 6(3):1–10

    Article  Google Scholar 

  33. Mahmassani HS (1990) Dynamic models of commuter behavior: experimental investigation and application to the analysis of planned traffic disruptions. Transp Res Part A General 24(6):465–484

    Article  Google Scholar 

  34. Lin J, Ge YE (2006) Impacts of traffic heterogeneity on roadside air pollution concentration. Transport Res Part D Transp Environ 11(2):166–170

    Article  Google Scholar 

  35. Nagurney A (2000) Congested urban transportation networks and emission paradoxes. Transp Res Part D Transp Environ 5(2):145–151

    Article  MathSciNet  Google Scholar 

  36. Zhang Y, Lv J, Ying Q (2010) Traffic assignment considering air quality. Transp Res Part D Transp Environ 15(8):497–502

    Article  Google Scholar 

  37. Aziz HMA, Ukkusuri SV (2012) Integration of environmental objectives in a system optimal dynamic traffic assignment model. Comput-Aided Civil Inf Eng 27(7):494–511

    Article  Google Scholar 

  38. Yin Y, Lawphongpanich S (2006) Internalizing emission externality on road networks. Transp Res Part D Transp Environ 11(4):292–301

    Article  Google Scholar 

  39. Boroujeni BY, Frey HC (2014) Road grade quantification based on global positioning system data obtained from real-world vehicle fuel use and emissions measurements. Atmos Environ 85:179–186

    Article  Google Scholar 

  40. Wyatt DW, Li H, Tate JE (2014) The impact of road grade on carbon dioxide (CO\(_2\)) emission of a passenger vehicle in real-world driving. Transp Res Part D 32:160–170

    Article  Google Scholar 

  41. Zhang KS, Frey HC (2006) Road grade estimation for on-road vehicle emissions modeling using light detection and ranging data. J AirWaste Manag Assoc 56(6):777–788

    Article  Google Scholar 

  42. Jovanovic AD, Pamucar DS, Pejcic-Tarle S (2014) Green vehicle routing in urban zones—a neuro-fuzzy approach. Expert Syst Appl 41:3189–3203

    Article  Google Scholar 

  43. The alternative fuels and advanced vehicles data center/Serbian Department of Energy (SDE), 2013. http://www.afdc.energy.gov.rs/afdc/locator/stations/state (date: 24.02.13)

  44. Krylatov, A.Yu., Zakharov, V.V.: Competitive traffic assignment in a green transit network. Int Game Theory Rev 18(2) (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dantzig GB, Ramser RH (1959) The truck dispatching problem. Manag Sci 6:80–91

    Article  MathSciNet  MATH  Google Scholar 

  46. Lenstra J, Rinnooy Kan A (1981) Complexity of vehicle routing and scheduling problems. Networks 11:221–228

    Article  Google Scholar 

  47. Cordeau J-F, Gendreau M, Laporte G, Potvin J-Y, Semet F (2002) A guide to vehicle routing heuristics. J Oper Res Soc 53:512–522

    Article  MATH  Google Scholar 

  48. Clarke G, Wright J (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581

    Article  Google Scholar 

  49. Cordeau JF, Laporte G, Mercier A (2001) A Unified tabu search heuristic for vehicle routing problems with time windows. J Oper Res Soc 52:928–936

    Article  MATH  Google Scholar 

  50. Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civil Eng 2:325–378

    Google Scholar 

  51. Schrijver A (2005) On the history of combinatorial optimization (till 1960). Handbook on modelling for discrete optimization. Elsevier, Amsterdam

    Book  MATH  Google Scholar 

  52. Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  53. Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman problems. J ACM 7(4):326–329

    Article  MathSciNet  MATH  Google Scholar 

  54. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Krylatov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylatov, A., Zakharov, V., Tuovinen, T. (2020). Transportation Processes Modelling in Congested Road Networks. In: Optimization Models and Methods for Equilibrium Traffic Assignment. Springer Tracts on Transportation and Traffic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-34102-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34102-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34101-5

  • Online ISBN: 978-3-030-34102-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics