Skip to main content

Scilab Based Toolbox for Fractional-order Chaotic Systems

  • Chapter
  • First Online:
Book cover Fractional-order Systems and PID Controllers

Abstract

In this chapter, a Scilab based toolbox has been developed for fractional-order chaotic systems. The systems include fractional-order Van der Pol and duffing oscillators and fractional-order Lorenz, Chen and Rössler’s systems. The dynamic behavior of these systems has been analyzed for various commensurate and non-commensurate orders using Scilab. In all these cases, the numerical solution has been obtained using Grünwald-Letnikov’s definition for fractional-order derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, W., Liao, S.K., Shimizu, N.: Dynamic behaviors of nonlinear fractional-order differential oscillator. J. Mech. Sci. Technol. 23(4), 1058–1064 (2009)

    Article  Google Scholar 

  2. Elwakil, A.S.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  3. Ge, Z.M., Ou, C.Y.: Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 34(2), 262–291 (2007)

    Article  Google Scholar 

  4. Shen, Y., Yang, S., Xing, H., Gao, G.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    Article  MathSciNet  Google Scholar 

  5. Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer Science & Business Media (2011)

    Google Scholar 

  6. Shen, Y., Yang, S., Sui, C.: Analysis on limit cycle of fractional-order van der Pol oscillator. Chaos Solitons Fractals 67, 94–102 (2014)

    Article  MathSciNet  Google Scholar 

  7. Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16(2), 975–986 (2011)

    Article  MathSciNet  Google Scholar 

  8. Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order van der Pol oscillator. J. Vib. Control 15(6), 803–819 (2009)

    Article  MathSciNet  Google Scholar 

  9. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)

    Article  Google Scholar 

  10. Wu, X.J., Shen, S.L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math. 86(7), 1274–1282 (2009)

    Article  MathSciNet  Google Scholar 

  11. Munmuangsaen, B., Srisuchinwong, B.: A hidden chaotic attractor in the classical Lorenz system. Chaos Solitons Fractals 107, 61–66 (2018)

    Article  MathSciNet  Google Scholar 

  12. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)

    Article  MathSciNet  Google Scholar 

  13. Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42(3), 1684–1691 (2009)

    Article  Google Scholar 

  14. Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  15. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)

    Google Scholar 

  16. Petráš, I.: A note on the fractional-order Volta’s system. Commun. Nonlinear Sci. Numer. Simul. 15(2), 384–393 (2010)

    Article  MathSciNet  Google Scholar 

  17. Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008)

    Article  Google Scholar 

  18. Petráš, I.: Stability of fractional order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12(3), 269–298 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Campbell, S.L., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in SCILAB. Springer, New York (2006)

    Google Scholar 

  20. Bunks, C., Chancelier, J.P., Delebecque, F., Goursat, M., Nikoukhah, R., Steer, S.: Engineering and Scientific Computing with Scilab. Springer Science & Business Media (2012)

    Google Scholar 

  21. Sharma, N., Gobbert, M.K.: A Comparative Evaluation of Matlab, FreeMat, and Scilab for Research and Teaching. UMBC Faculty Collection, Octave (2010)

    Google Scholar 

  22. Bordeianu, C.C., Besliu, C., Jipa, A., Felea, D., Grossu, I.V.: Scilab software package for the study of dynamical systems. Comput. Phys. Commun. 178(10), 788–793 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Bingi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R. (2020). Scilab Based Toolbox for Fractional-order Chaotic Systems. In: Fractional-order Systems and PID Controllers. Studies in Systems, Decision and Control, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-33934-0_5

Download citation

Publish with us

Policies and ethics