Skip to main content

A Distributed and Clustering-Based Algorithm for the Enumeration Problem in Abstract Argumentation

  • Conference paper
  • First Online:
PRIMA 2019: Principles and Practice of Multi-Agent Systems (PRIMA 2019)

Abstract

Computing acceptability semantics of abstract argumentation frameworks is receiving increasing attention. Large-scale instances, with a clustered structure, have shown particularly difficult to compute. This paper presents a distributed algorithm, AFDivider, that enumerates the acceptable sets under several labelling-based semantics. This algorithm starts with cutting the argumentation framework into clusters thanks to a spectral clustering method, before computing simultaneously in each cluster parts of the labellings. This algorithm is proven to be sound and complete for the stable, complete and preferred semantics, and empirical results are presented.

Supported by the ANR-11-LABEX-0040-CIMI project of the CIMI International Centre for Mathematics and Computer Science in Toulouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Competition on Computational Models of Argumentation (ICCMA) http://argumentationcompetition.org/.

  2. 2.

    The density in an argumentation graph is the ratio ā€œnumber of existing attacksā€ over ā€œnumber of potential attacksā€ (this last number is equal to \(n^2\) with n being the number of arguments).

  3. 3.

    According toĀ [23], the set of arguments is not necessarily finite. Nevertheless, in this paper, it is reasonable to assume that it is finite.

  4. 4.

    There exist algorithms, such as Krylov-Schur method, able to compute eigenvectors from smallest to greatest eigenvalue and to stop at any wanted step (e.g. the number of vectors found). With such an algorithm it is not necessary to find all the solutions as we are interested only in the small eigenvalues.

  5. 5.

    Given n observations, a KMeans algorithm aims to partition the n observations into k subsets such that the distance between the elements inside each subset is minimized. Here we have \(n=5\) and \(k=2\).

  6. 6.

    To highlight the necessity of the maximality check, let us take as minimal example the AF defined by \(\langle \{a,b\}, \{(a,b),(b,a)\} \rangle \) and a partition of it in which each argument is in a different cluster. For each cluster, we will have three possible labellings as the inward attack source may be labelled \({\texttt {\textit{in}}}\), \({\texttt {\textit{out}}}\) or \({{\texttt {\textit{und}}}}\) in the other cluster. The reunifying phase will thus admit the labelling \(\{(a, {{\texttt {\textit{und}}}}), (b,{{\texttt {\textit{und}}}})\}\) which is not a preferred labelling.

  7. 7.

    amador-transit_20151216_1706.gml.80.apx and basin-or-us.gml.20.apx are instances which come from real data of the traffic domain.

  8. 8.

    Note that Pyglaf is also multi-core. Moreover, when we compare Pyglaf and AFDivider, we use a computer with the same number of cores. So the fact that there is a more important parallelization in AFDivider (so more threads) is not what explains the difference in runtime for the preferred semantics.

  9. 9.

    For an overview on the different AF splitting possibilities see [8].

References

  1. Albert, R., BarabƔsi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Alfano, G., Greco, S., Parisi, F.: Efficient computation of extensions for dynamic abstract argumentation frameworks: an incremental approach. In: IJCAI, pp. 49ā€“55 (2017)

    Google ScholarĀ 

  3. Alviano, M.: The pyglaf argumentation reasoner. In: OASIcs-OpenAccess Series in Informatics, vol. 58 (2018)

    Google ScholarĀ 

  4. BarabƔsi, A.L., et al.: Network Science. Cambridge University Press, Cambridge (2016)

    MATHĀ  Google ScholarĀ 

  5. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L.W.N., Villata, S.: On input/output argumentation frameworks. In: COMMA, pp. 358ā€“365 (2012)

    Google ScholarĀ 

  6. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365ā€“410 (2011)

    ArticleĀ  Google ScholarĀ 

  7. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework with recursive attacks. Int. J. Approximate Reasoning 52(1), 19ā€“37 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Baroni, P., Giacomin, M., Liao, B.: Locality and modularity in abstract argumentation. In: Handbook of Formal Argumentation, pp. 937ā€“979. College Publication (2018)

    Google ScholarĀ 

  9. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., Van Der Torre, L., Villata, S.: On the input/output behavior of argumentation frameworks. Artif. Intell. 217, 144ā€“197 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Baroni, P., Giacomin, M., Liao, B.: On topology-related properties of abstract argumentation semantics. a correction and extension to dynamics of argumentation systems: a division-based method. Artif. Intell. 212, 104ā€“115 (2014)

    Google ScholarĀ 

  11. Baumann, R., Brewka, G., Wong, R.: Splitting argumentation frameworks: an empirical evaluation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 17ā€“31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_2

    ChapterĀ  Google ScholarĀ 

  12. Bistarelli, S., Rossi, F., Santini, F.: Not only size, but also shape counts: abstract argumentation solvers are benchmark-sensitive. J. Log. Comput. 28(1), 85ā€“117 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Bistarelli, S., Santini, F., Kotthoff, L., Mantadelis, T., Taticchi, C.: Int. Competition on Computational Models of Argumentation (2019). https://www.iccma2019.dmi.unipg.it/

  14. Butterworth, J., Dunne, P.: Spectral techniques in argumentation framework analysis. COMMA 287, 167 (2016)

    Google ScholarĀ 

  15. Caminada, M.: On the issue of reinstatement in argumentation. In: JELIA, pp. 111ā€“123 (2006)

    Google ScholarĀ 

  16. Carrera, Ɓ., Iglesias, C.A.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509ā€“535 (2015)

    ArticleĀ  Google ScholarĀ 

  17. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU, pp. 378ā€“389 (2005)

    Google ScholarĀ 

  18. Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation. In: KR (2014)

    Google ScholarĀ 

  19. Cerutti, F., Tachmazidis, I., Vallati, M., Batsakis, S., Giacomin, M., Antoniou, G.: Exploiting parallelism for hard problems in abstract argumentation. In: AAAI, pp. 1475ā€“1481 (2015)

    Google ScholarĀ 

  20. Cerutti, F., Vallati, M., Giacomin, M., Zanetti, T.: ArgSemSAT-2017 (2017)

    Google ScholarĀ 

  21. Charwat, G., DvoÅ™Ć”k, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for solving reasoning problems in abstract argumentation-a survey. Artif. Intell. 220, 28ā€“63 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Corea, C., Thimm, M.: Using matrix exponentials for abstract argumentation. In: SAFA Workshop, pp. 10ā€“21 (2016)

    Google ScholarĀ 

  23. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77, 321ā€“357 (1995)

    Google ScholarĀ 

  24. DvoÅ™Ć”k, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186, 1ā€“37 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  25. Krƶll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the extensions of abstract argumentation frameworks. In: IJCAI, pp. 1145ā€“1152 (2017)

    Google ScholarĀ 

  26. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS v3.0. ICCMA 2019 Solver Description (2019)

    Google ScholarĀ 

  27. Liao, B.: Toward incremental computation of argumentation semantics: a decomposition-based approach. Ann. Math. Artif. Intell. 67(3ā€“4), 319ā€“358 (2013)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  28. Liao, B., Huang, H.: Partial semantics of argumentation: basic properties and empirical. J. Logic Comput. 23(3), 541ā€“562 (2013)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  29. Liao, B., Jin, L., Koons, R.C.: Dynamics of argumentation systems: a division-based method. Artif. Intell. 175(11), 1790ā€“1814 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  30. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129ā€“137 (1982)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  31. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533(4), 95ā€“142 (2013)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  32. Niskanen, A., JƤrvisal, M.: \(\mu \)-toksia. Participating in ICCMA 2019 (2019)

    Google ScholarĀ 

  33. Robert, M.K.: Elementary linear algebra. University of Queenland (2013)

    Google ScholarĀ 

  34. Rodrigues, O., Black, E., Luck, M., Murphy, J.: On structural properties of argumentation frameworks: lessons from ICCMA. In: SAFA Workshop, pp. 22ā€“35 (2018)

    Google ScholarĀ 

  35. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27ā€“64 (2007)

    ArticleĀ  Google ScholarĀ 

  36. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395ā€“416 (2007)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  37. Xu, Y., Cayrol, C.: Initial sets in abstract argumentation frameworks. J. Appl. Non-Classical Logics 28(2ā€“3), 260ā€“279 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Lagasquie-Schiex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doutre, S., Lafages, M., Lagasquie-Schiex, MC. (2019). A Distributed and Clustering-Based Algorithm for the Enumeration Problem in Abstract Argumentation. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds) PRIMA 2019: Principles and Practice of Multi-Agent Systems. PRIMA 2019. Lecture Notes in Computer Science(), vol 11873. Springer, Cham. https://doi.org/10.1007/978-3-030-33792-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33792-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33791-9

  • Online ISBN: 978-3-030-33792-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics