Skip to main content

Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Abstract

Lidar-Monocular Visual Odometry (LIMO), an odometry estimation algorithm, combines camera and LIght Detection And Ranging sensor (LIDAR) for visual localization by tracking features from camera images and LIDAR measurements. LIMO then estimates the motion using Bundle Adjustment based on robust key frames. LIMO uses semantic labelling and weights of the vegetation landmarks for rejecting outliers. A drawback of LIMO as well as many other odometry estimation algorithms is that it has many parameters that need to be manually adjusted according to dynamic changes in the environment in order to decrease translational errors. In this paper, we present and argue the use of Genetic Algorithm (GA) to optimize parameters with reference to LIMO and maximize LIMO’s localization and motion estimation performance. We evaluate our approach on the well-known KITTI odometry dataset and show that the GA helps LIMO to reduce translation error in different datasets.

This material is based upon work supported by the National Aeronautics and Space Administration (NASA) Grant No. NNX15AI02H issued through the NVSGC-RI program under sub-award No. 19–21, and the RID program under sub-award No. 19–29, and the NVSGC-CD program under sub-award No. 18–54. This work is also partially supported by the Office of Naval Research under Grant N00014-17-1-2558.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balazadegan Sarvrood, Y., Hosseinyalamdary, S., Gao, Y.: Visual-lidar odometry aided by reduced IMU. ISPRS Int. J. Geo-Inf. 5(1), 3 (2016)

    Article  Google Scholar 

  2. Buczko, M., Willert, V.: Flow-decoupled normalized reprojection error for visual odometry. In: 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1161–1167 (2016)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Cvišić, I., Petrović, I.: Stereo odometry based on careful feature selection and tracking. In: European Conference on Mobile Robots, pp. 1–6 (2015)

    Google Scholar 

  5. Duckett, T.: A genetic algorithm for simultaneous localization and mapping. In: IEEE International Conference on Robotics and Automation, pp. 434–439, September 2003

    Google Scholar 

  6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  8. Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automatic camera and range sensor calibration using a single shot. In: IEEE International Conference on Robotics and Automation, pp. 3936–3943 (2012)

    Google Scholar 

  9. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3D reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, pp. 963–968 (2011)

    Google Scholar 

  10. Gibb, S., La, H.M., Louis, S.: A genetic algorithm for convolutional network structure optimization for concrete crack detection. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)

    Google Scholar 

  11. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, vol. 1, pp. 69–93 (1991)

    Google Scholar 

  12. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  13. Graeter, J., Wilczynski, A., Lauer, M.: LIMO: lidar-monocular visual odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7872–7879 (2018)

    Google Scholar 

  14. Gräter, J., Strauss, T., Lauer, M.: Photometric laser scanner to camera calibration for low resolution sensors. In: 19th IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 1552–1557 (2016)

    Google Scholar 

  15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge university press, Cambridge (2003)

    Google Scholar 

  16. La, H.M., Nguyen, T.H., Nguyen, C.H., Nguyen, H.N.: Optimal flocking control for a mobile sensor network based a moving target tracking. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 4801–4806, October 2009

    Google Scholar 

  17. Sehgal, A., La, H., Louis, S., Nguyen, H.: Deep reinforcement learning using genetic algorithm for parameter optimization. In: IEEE International Conference on Robotic Computing, pp. 596–601 (2019)

    Google Scholar 

  18. Singandhupe, A., La, H.: A review of SLAM techniques and security in autonomous driving. In: IEEE International Conference on Robotic Computing, pp. 602–607 (2019)

    Google Scholar 

  19. Sons, M., Lategahn, H., Keller, C.G., Stiller, C.: Multi trajectory pose adjustment for life-long mapping. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 901–906 (2015)

    Google Scholar 

  20. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

  21. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010). https://doi.org/10.1007/978-1-84882-935-0

  22. Tavakkoli, A., Ambardekar, A., Nicolescu, M., Louis, S.: A genetic approach to training support vector data descriptors for background modeling in video data. In: International Symposium on Visual Computing, pp. 318–327 (2007)

    Google Scholar 

  23. Torr, P.H., Fitzgibbon, A.W.: Invariant fitting of two view geometry. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 648–650 (2004)

    Article  Google Scholar 

  24. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, p. 9 (2014)

    Google Scholar 

  25. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: low-drift, robust, and fast. In: IEEE International Conference on Robotics and Automation, pp. 2174–2181 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Manh La .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehgal, A., Singandhupe, A., La, H.M., Tavakkoli, A., Louis, S.J. (2019). Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics