Skip to main content

Image Quality Constrained GAN for Super-Resolution

  • Conference paper
  • First Online:
  • 1699 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

As one of the most important research topics in image processing, super-resolution aims to estimate high resolution images from single or multiple low resolution images taken from the same scene. With the advent of deep learning techniques, generative adversarial networks are widely adopted for solving various image processing problems including super resolution. We investigate the effect of introducing image quality constraints into the training objective function of a generative adversarial network for super resolution. Experiment results demonstrate that network performance has great potential to be improved with such constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_27

    Chapter  Google Scholar 

  2. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  3. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Proceedings of the European Conference on Computer Vision, pp. 185–200 (2018)

    Chapter  Google Scholar 

  4. Freeman, W.T., Pasztor, E.C.: Learning to estimate scenes from images. In: Proceedings of the International Conference on Advances in Neural Information Processing Systems, pp. 775–781 (1999)

    Google Scholar 

  5. Gerchberg, R.: Super-resolution through error energy reduction. Opt. Acta: Int. J. Opt. 21(9), 709–720 (1974)

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the International Conference on Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  8. Irani, M., Peleg, S.: Super resolution from image sequences. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 115–120 (1990)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  11. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kumar, V., Gupta, P.: Importance of statistical measures in digital image processing. Int. J. Emerg. Technol. Adv. Eng. 2(8), 56–62 (2012)

    Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  15. Li, X., Hu, Y., Gao, X., Tao, D., Ning, B.: A multi-frame image super-resolution method. Sig. Process. 90(2), 405–414 (2010)

    Article  Google Scholar 

  16. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  17. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Proceedings of the International Conference on Advances in Neural Information Processing Systems, pp. 406–416 (2017)

    Google Scholar 

  18. Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE Conference on Computer Vision (2001)

    Google Scholar 

  19. Nguyen, N., Milanfar, P., Golub, G.: A computationally efficient superresolution image reconstruction algorithm. IEEE Trans. Image Process. 10(4), 573–583 (2001)

    Article  Google Scholar 

  20. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  21. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3799 (2015)

    Google Scholar 

  22. Segall, C.A., Molina, R., Katsaggelos, A.K.: High-resolution images from low-resolution compressed video. IEEE Signal Process. Mag. 20(3), 37–48 (2003)

    Article  Google Scholar 

  23. Shen, H., Peng, L., Yue, L., Yuan, Q., Zhang, L.: Adaptive norm selection for regularized image restoration and super-resolution. IEEE Trans. Cybern. 46(6), 1388–1399 (2015)

    Article  Google Scholar 

  24. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  25. Su, K., Tian, Q., Xue, Q., Sebe, N., Ma, J.: Neighborhood issue in single-frame image super-resolution. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 4–pp (2005)

    Google Scholar 

  26. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  27. Trinh, D.H., Luong, M., Dibos, F., Rocchisani, J.M., Pham, C.D., Nguyen, T.Q.: Novel example-based method for super-resolution and denoising of medical images. IEEE Trans. Image Process. 23(4), 1882–1895 (2014)

    Article  MathSciNet  Google Scholar 

  28. Vural, C., Sethares, W.A.: Blind deconvolution of noisy blurred images via dispersion minimization. In: Proceedings of the International Conference on Digital Signal Processing Proceedings, vol. 2, pp. 787–790 (2002)

    Google Scholar 

  29. Willett, R., Jermyn, I., Nowak, R., Zerubia, J.: Wavelet-based superresolution in astronomy. Astronomical Society of the Pacific (2003)

    Google Scholar 

  30. Yang, M.C., Chu, C.T., Wang, Y.C.F.: Learning sparse image representation with support vector regression for single-image super-resolution. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1973–1976 (2010)

    Google Scholar 

  31. Yang, Q., Yang, R., Davis, J., Nistér, D.: Spatial-depth super resolution for range images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  32. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia (2019). https://doi.org/10.1109/TMM.2019.2919431

  33. Yin, H., Hussain, I.: Independent component analysis and nongaussianity for blind image deconvolution and deblurring. Integr. Comput.-Aided Eng. 15(3), 219–228 (2008)

    Article  Google Scholar 

  34. Yuan, Q., Zhang, L., Shen, H.: Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans. Circuits Syst. Video Technol. 22(3), 379–392 (2011)

    Article  Google Scholar 

  35. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  36. Zhang, X., Tang, M., Tong, R.: Robust super resolution of compressed video. Vis. Comput. 28(12), 1167–1180 (2012)

    Article  Google Scholar 

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, J., Peng, Y., Yin, H. (2019). Image Quality Constrained GAN for Super-Resolution. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics