Skip to main content

Thermal Processes in Vacuum

  • Chapter
  • First Online:
Solving Problems in Thermal Engineering

Part of the book series: Power Systems ((POWSYS))

Abstract

The dominant heat transfer mode in vacuum is thermal radiation which is emphasized in the present chapter. Besides its relevance in space exploration, several industrial processes and commercial products use vacuum directly or its production require a technological process under vacuum. Firstly, the fundamentals of thermal radiation are briefly discussed to highlight the governing parameters of the process. Then the available thermal control methods are introduced with supporting examples. Finally, the thermal design and analysis of the SMOG-1 PocketQube class satellite is detailed, performed by the authors of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sunlight also acts as a force on the surfaces. The most spectacular example for the use of this phenomenon is the revival of the Kepler Space Telescope [37]. It featured six reaction wheels from which the failure of the fourth one anticipated that the mission is over. However, the photon pressure of the sunlight turned to be appropriate for a highly limited but functional 3D motion control.

References

  1. M. Kociak, L.F. Zagonel, Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017)

    Article  Google Scholar 

  2. N. Brodusch, H. Demers, A. Gellé, A. Moores, R. Gauvin, Electron energy-loss spectroscopy (EELS) with a cold-field emission scanning electron microscope at low accelerating voltage in transmission mode. Ultramicroscopy 203(Dec. 2018), 21–36 (2019)

    Article  Google Scholar 

  3. P. Mølgaard Mortensen, T.W. Hansen, J. Birkedal Wagner, A. Degn Jensen, Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics. Ultramicroscopy 152, 1–9 (2015)

    Article  Google Scholar 

  4. S. Gomès, A. Assy, P.O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi A Appl. Mater. Sci. 212(3), 477–494 (2015)

    Article  Google Scholar 

  5. K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M.T. Homer Reid, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Radiative heat transfer in the extreme near field. Nature 528(7582), 387–391 (2015)

    Article  Google Scholar 

  6. Y. Wang, M. Xingsen, S. Shen, W. Zhang, Heat transfer characteristics of steam condensation flow in vacuum horizontal tube. Int. J. Heat Mass Transf. 108, 128–135 (2017)

    Article  Google Scholar 

  7. S.H. Choi, Thermal type seawater desalination with barometric vacuum and solar energy. Energy 141, 1332–1349 (2017)

    Article  Google Scholar 

  8. N. Myneni, A. Date, M. Ward, P. Gokhale, M. Gay, Combined thermoelectric power generation and passive vacuum desalination. Energy Procedia 110(December 2016), 262–267 (2017)

    Article  Google Scholar 

  9. J. Ruan, J. Huang, B. Qin, L. Dong, Heat transfer in vacuum pyrolysis of decomposing hazardous plastic wastes. ACS Sustain. Chem. Eng. 6(4), 5424–5430 (2018)

    Article  Google Scholar 

  10. X. Zhang, D. Huang, W. Jiang, G. Zha, J. Deng, P. Deng, X. Kong, D. Liu, Selective separation and recovery of rare metals by vulcanization-vacuum distillation of cadmium telluride waste. Sep. Purif. Technol. 230(July 2019), 115864 (2020)

    Article  Google Scholar 

  11. L.E. Juanicó, Modified vacuum tubes for overheating limitation of solar collectors: a dynamical modeling approach. Solar Energy 171(July), 804–810 (2018)

    Article  Google Scholar 

  12. T.Y. Wang, Y.H. Zhao, Y.H. Diao, R.Y. Ren, Z.Y. Wang, Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy 177, 16–28 (2019)

    Article  Google Scholar 

  13. X. Huang, Q. Wang, H. Yang, S. Zhong, D. Jiao, K. Zhang, M. Li, G. Pei, Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector. Renew. Energy 138, 999–1009 (2019)

    Article  Google Scholar 

  14. C. Strauß, R. Gustus, W. Maus-Friedrichs, S. Schöler, U. Holländer, K. Möhwald, Influence of atmosphere during vacuum heat treatment of stainless steels AISI 304 and 446. J. Mater. Process. Technol. 264(August 2018), 1–9 (2019)

    Article  Google Scholar 

  15. M. Asemi, M. Ahmadi, M. Ghanaatshoar, Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications. Ceram. Int. 44(11), 12862–12868 (2018)

    Article  Google Scholar 

  16. T.M. Flynn, Cryogenic Engineering, 2nd edn. (CRC Press, Taylor & Francis Group, Louisville, CO, 2004)

    Google Scholar 

  17. J.P. Holman (ed.), Heat Transfer, McGraw-Hill Series in Mechanical Engineering, 10th edn. (McGraw-Hill Education, New York, 2009)

    Google Scholar 

  18. M. Martin, K. Holge, VDI Heat Atlas, 2nd edn. (Springer, Berlin, 2010)

    Google Scholar 

  19. M. Alam, H. Singh, M.C. Limbachiya, Vacuum insulation panels (vips) for building construction industry—a review of the contemporary developments and future directions. Appl. Energy 88(11), 3592–3602 (2011)

    Article  Google Scholar 

  20. A. Sandá, S.L. Moya, L. Valenzuela, Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: a review. Renew. Sustain. Energy Rev. 113(June), 109226 (2019)

    Article  Google Scholar 

  21. S. Sobhansarbandi, P.M. Martinez, A. Papadimitratos, A. Zakhidov, F. Hassanipour, Evacuated tube solar collector with multifunctional absorber layers. Solar Energy 146, 342–350 (2017)

    Article  Google Scholar 

  22. H.J. Song, W. Zhang, Y.Q. Li, Z.W. Yang, A.B. Ming, Exergy analysis and parameter optimization of heat pipe receiver with integrated latent heat thermal energy storage for space station in charging process. Appl. Therm. Eng. 119, 304–311 (2017)

    Article  Google Scholar 

  23. J. Yang, T. Caillat, Thermoelectric materials for space. MRS Bull. 31(3), 224–229 (2006)

    Article  Google Scholar 

  24. A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer (Wiley, Hoboken, 2001)

    Google Scholar 

  25. F. Hajabdollahi, H.H. Rafsanjani, Z. Hajabdollahi, Y. Hamidi, Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm. Appl. Math. Model. 36(1), 244–254 (2012)

    Article  MathSciNet  Google Scholar 

  26. H. Azarkish, S.M.H. Sarvari, A. Behzadmehr, Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm. Int. J. Therm. Sci. 49(11), 2222–2229 (2010)

    Article  Google Scholar 

  27. R. Das, Estimation of parameters in a fin with temperature-dependent thermal conductivity and radiation. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 230(6), 474–485 (2016)

    Article  Google Scholar 

  28. C. Wang, J. Chen, S. Qiu, W. Tian, D. Zhang, G.H. Su, Performance analysis of heat pipe radiator unit for space nuclear power reactor. Ann. Nucl. Energy 103, 74–84 (2017)

    Article  Google Scholar 

  29. J. Bouwmeester, J. Guo, Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut. 67(7–8), 854–862 (2010)

    Article  Google Scholar 

  30. M. Tolmasoff, C. Venturini, Improving mission success of cubeSats, in Proceedings of the U.S. Space Program Mission Assurance Improvement Workshop (El Segundo, CA, 2017)

    Google Scholar 

  31. C.A. Belk, J.H. Robinson, M.B. Alexander, W.J. Cooke, S.D. Pavelitz, Meteoroids and Orbital Debris: Effects on Spacecraft, Technical Report, NASA Marshall Space Flight Cente, Huntsville, AL (1997)

    Google Scholar 

  32. S.B. Khan, A. Francesconi, C. Giacomuzzo, E.C. Lorenzini, Survivability to orbital debris of tape tethers for end-of-life spacecraft de-orbiting. Aerosp. Sci. Technol. 52, 167–172 (2016)

    Article  Google Scholar 

  33. T. Maury, P. Loubet, M. Trisolini, A. Gallice, G. Sonnemann, C. Colombo, Assessing the impact of space debris on orbital resource in life cycle assessment: a proposed method and case study. Sci. Total Environ. 667, 780–791 (2019)

    Article  Google Scholar 

  34. S. Lee, A. Hutputanasin, A. Toorian, W. Lan, R. Munakata, J. Carnahan, D. Pignatelli, A. Mehrparvar. CubeSat Design Specification Rev. 13, (2014)

    Google Scholar 

  35. D.G. Gilmore, Spacecraft Thermal Control Handbook, 2nd edn. (Aerospace Press, El Segundo, CA, 2002)

    Google Scholar 

  36. R. Kovács, V. Józsa, Thermal analysis of the SMOG-1 PocketQube satellite. Appl. Therm. Eng. 139, 506–513 (2018)

    Article  Google Scholar 

  37. W. Stenzel, A Sunny Outlook for NASA Kepler’s Second Light, Technical report, NASA Ames Research Center, Moffett Field, CA (2013)

    Google Scholar 

  38. N.D. Anh, N.N. Hieu, P.N. Chung, N.T. Ahn, Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization. Appl. Therm. Eng. 94, 607–614 (2016)

    Article  Google Scholar 

  39. M. Bonnici, P. Mollicone, M. Fenech, M.A. Azzopardi, Analytical and numerical models for thermal related design of a new pico-satellite. Appl. Therm. Eng. 159, 113908 (2019)

    Article  Google Scholar 

  40. A. Torres, D. Mishkinis, T. Kaya, Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction. Appl. Therm. Eng. 65(1–2), 623–632 (2014)

    Article  Google Scholar 

  41. S. Corpino, M. Caldera, F. Nichele, M. Masoero, N. Viola, Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut. 115, 247–261 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Józsa .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Józsa, V., Kovács, R. (2020). Thermal Processes in Vacuum. In: Solving Problems in Thermal Engineering. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-33475-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33475-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33474-1

  • Online ISBN: 978-3-030-33475-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics