Skip to main content

Applications in Renewable Energy

  • Chapter
  • First Online:
  • 727 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

We are living in the age of the energy crisis. To survive ourselves, it is crucial to find highly efficient technologies and change from the current fossil fuel-heavy energy mix to renewable-based energy generation. The present chapter highlights three main fields: solar and wind energy utilization and combustion. Then the last section briefly discusses the building blocks of thermal power cycles. These selected topics provide a versatile knowledge to the reader to identify the waste heat sources and find a proper solution that harvests it. Each of the first three sections features a deeply discussed, solved thermal problem, and the last section includes the key equations to allow the reader to perform initial calculations on the key components of a thermal cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Source reddit.com/r/Showerthoughts, 05/11/2016.

  2. 2.

    Beyond entropy, another environment-centric evaluation method, the exergy analysis reveals the effect of combustion in greater detail. Its single message is to use the appropriate heat source for a given process [219, 220], i.e., it is highly destructive to produce warm water (\({\sim }\)40–60 \(^\circ \)C) at home by using a natural gas-fired boiler that produces \({\sim } 1000\) \(^\circ \)C flue gas.

References

  1. U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)

    Article  Google Scholar 

  2. T. Wheeler, J. Von Braun, Climate change impacts on global food security. Science 341(6145), 508–513 (2013)

    Article  Google Scholar 

  3. M.P. McCarthy, M.J. Best, R.A. Betts, Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 37(9), 1–5 (2010)

    Article  Google Scholar 

  4. A. Dai, Drought under global warming: a review. Wiley Interdiscip. Rev.: Clim. Change 2(1), 45–65 (2011)

    Google Scholar 

  5. J.A. Church, N.J. White, A 20th Century Acceleration in Global Sea-Level Rise (2006)

    Google Scholar 

  6. M.D. Flannigan, M.A. Krawchuk, W.J. De Groot, B.M. Wotton, L.M. Gowman, Implications of changing climate for global wildland fire. Int. J Wildland Fire, 18(5), 483–507 (2009)

    Google Scholar 

  7. R.A. Pielke, C. Landsea, M. Mayfield, J. Laver, R. Pasch, Hurricanes and global warming. Bull. Am. Meteorol. Soc. 86(11), 1571–1575 (2005)

    Article  Google Scholar 

  8. W.R. Cline, The Economics of Global Warming (Peterson Institute for International Economics, Washington, D.C., 1992)

    Google Scholar 

  9. M.M. Mekonnen, P.W. Gerbens-Leenes, A. Y. Hoekstra, Future electricity: the challenge of reducing both carbon and water footprint. Sci. Total Environ. 569–570, 1282–1288 (2016)

    Article  Google Scholar 

  10. N.E. Vaughan, T.M. Lenton, A review of climate geoengineering proposals. Clim. Change 109(3–4), 745–790 (2011)

    Article  Google Scholar 

  11. A. Sandá, S.L. Moya, L. Valenzuela, Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: a review. Renew. Sustain. Energy Rev. 113(June), 109226 (2019)

    Article  Google Scholar 

  12. F. Meneguzzo, R. Ciriminna, L. Albanese, M. Pagliaro, The great solar boom: a global perspective into the far reaching impact of an unexpected energy revolution. Energy Sci. Eng. 3(6), 499–509 (2015)

    Article  Google Scholar 

  13. R. Ciriminna, F. Meneguzzo, M. Pecoraino, M. Pagliaro, Rethinking solar energy education on the dawn of the solar economy. Renew. Sustain. Energy Rev. 63, 13–18 (2016)

    Article  Google Scholar 

  14. Z. Dobrotkova, K. Surana, P. Audinet, The price of solar energy: comparing competitive auctions for utility-scale solar PV in developing countries. Energy Policy 118(Jan), 133–148 (2018)

    Article  Google Scholar 

  15. R.Y. Shum. Heliopolitics : the international political economy of solar supply chains. Energy Strateg. Rev. 26(June 2019), 100390 (2020)

    Article  Google Scholar 

  16. G.F. Nemet, E. O’Shaughnessy, R. Wiser, N. Darghouth, G. Barbose, K. Gillingham, V. Rai, Characteristics of low-priced solar PV systems in the U.S. Appl. Energy, 187, 501–513 (2017)

    Article  Google Scholar 

  17. J.-E. Zafrilla, G. Arce, M.-Á. Cadarso, C. Córcoles, N. Gómez, L.-A. López, F. Monsalve, M.-Á. Tobarra, Triple bottom line analysis of the Spanish solar photovoltaic sector: a footprint assessment. Renew. Sustain. Energy Rev. 114(Feb), 109311 (2019)

    Article  Google Scholar 

  18. M.J. De Wild-Scholten, Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 119, 296–305 (2013)

    Article  Google Scholar 

  19. S. Perry, J. Klemeš, I. Bulatov, Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy 33(10), 1489–1497 (2008)

    Article  Google Scholar 

  20. V.M. Fthenakis, H.C. Kim, Greenhouse-gas emissions from solar electric- and nuclear power: a life-cycle study. Energy Policy 35(4), 2549–2557 (2007)

    Article  Google Scholar 

  21. V. Pranesh, R. Velraj, S. Christopher, V. Kumaresan, A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Sol. Energy 187(Apr), 293–340 (2019)

    Article  Google Scholar 

  22. L. Evangelisti, R. De Lieto Vollaro, F. Asdrubali, Latest advances on solar thermal collectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318 (2019)

    Article  Google Scholar 

  23. F. Bayrak, N. Abu-Hamdeh, K.A. Alnefaie, H.F. Öztop, A review on exergy analysis of solar electricity production. Renew. Sustain. Energy Rev. 74(June 2016), 755–770 (2017)

    Article  Google Scholar 

  24. H.A. Muhammed, S.A. Atrooshi, Modeling solar chimney for geometry optimization. Renew. Energy 138, 212–223 (2019)

    Article  Google Scholar 

  25. H.H. Al-Kayiem, O.C. Aja, Historic and recent progress in solar chimney power plant enhancing technologies. Renew. Sustain. Energy Rev. 58, 1269–1292 (2016)

    Article  Google Scholar 

  26. S. Akbarzadeh, M.S. Valipour, Heat transfer enhancement in parabolic trough collectors: a comprehensive review. Renew. Sustain. Energy Rev. 92(Nov 2017), 198–218 (2018)

    Article  Google Scholar 

  27. G.K. Manikandan, S. Iniyan, R. Goic, Enhancing the optical and thermal efficiency of a parabolic trough collector—a review. Appl. Energy 235(Nov 2018), 1524–1540 (2019)

    Article  Google Scholar 

  28. F.J. Collado, J. Guallar, Quick design of regular heliostat fields for commercial solar tower power plants. Energy 178, 115–125 (2019)

    Article  Google Scholar 

  29. A.A. Hachicha, B.A.A. Yousef, Z. Said, I. Rodríguez, A review study on the modeling of high-temperature solar thermal collector systems. Renew. Sustain. Energy Rev. 112(June), 280–298 (2019)

    Article  Google Scholar 

  30. G. Srilakshmi, N.S. Suresh, N.C. Thirumalai, M.A. Ramaswamy, Preliminary design of heliostat field and performance analysis of solar tower plants with thermal storage and hybridisation. Sustain. Energy Technol. Assess. 19, 102–113 (2017)

    Article  Google Scholar 

  31. M.J. Wagner, W.T. Hamilton, A. Newman, J. Dent, C. Diep, R. Braun, Optimizing dispatch for a concentrated solar power tower. Sol. Energy 174(March), 1198–1211 (2018)

    Article  Google Scholar 

  32. E. Bellos, C. Tzivanidis, A. Papadopoulos, Daily, monthly and yearly performance of a linear Fresnel reflector. Sol. Energy 173(Nov 2017), 517–529 (2018)

    Article  Google Scholar 

  33. E. Bellos, C. Tzivanidis, M.A. Moghimi, Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Sol. Energy 186(May), 247–256 (2019)

    Article  Google Scholar 

  34. E. Bellos, Progress in the design and the applications of linear Fresnel reflectors—a critical review. Therm. Sci. Eng. Prog. 10(Dec 2018), 112–137 (2019)

    Article  Google Scholar 

  35. L. Sun, C. Zong, Y. Liang, W. Huang, Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish. Energy 180, 192–205 (2019)

    Article  Google Scholar 

  36. R. Karimi, T.T. Gheinani, V.M. Avargani, A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system. Renew. Energy 125, 768–782 (2018)

    Article  Google Scholar 

  37. S. Pavlovic, R. Loni, E. Bellos, D. Vasiljević, G. Najafi, A. Kasaeian, Comparative study of spiral and conical cavity receivers for a solar dish collector. Energy Convers. Manag. 178(September), 111–122 (2018)

    Article  Google Scholar 

  38. S. Ghazi, A. Sayigh, K. Ip, Dust effect on flat surfaces—a review paper. Renew. Sustain. Energy Rev. 33, 742–751 (2014)

    Article  Google Scholar 

  39. D.R.H. Jones, Creep failures of overheated boiler, superheater and reformer tubes. Eng. Fail. Anal. 11(6), 873–893 (2004)

    Article  Google Scholar 

  40. A. Arjunwadkar, P. Basu, B. Acharya, A review of some operation and maintenance issues of CFBC boilers. Appl. Therm. Eng. 102, 672–694 (2016)

    Article  Google Scholar 

  41. A.L. Avila-Marin, J. Fernandez-Reche, A. Martinez-Tarifa, Modelling strategies for porous structures as solar receivers in central receiver systems: a review. Renew. Sustain. Energy Rev. 111(May), 15–33 (2019)

    Article  Google Scholar 

  42. A. Schmitt, F. Dinter, C. Reichel, Computational fluid dynamics study to reduce heat losses at the receiver of a solar tower plant. Sol. Energy 190(May), 286–300 (2019)

    Article  Google Scholar 

  43. W.Q. Wang, Y. Qiu, Mi.J. Li, F. Cao, Z.B. Liu, Optical efficiency improvement of solar power tower by employing and optimizing novel fin-like receivers. Energy Convers. Manag. 184(Dec 2018), 219–234 (2019)

    Article  Google Scholar 

  44. S. Kiwan, A.L. Khammash, Investigations into the spiral distribution of the heliostat field in solar central tower system. Sol. Energy 164(Feb), 25–37 (2018)

    Article  Google Scholar 

  45. M. Atif, F.A. Al-Sulaiman, Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm. Energy Convers. Manag. 95, 1–9 (2015)

    Article  Google Scholar 

  46. M.R. Rodríguez-Sánchez, A. Sánchez-González, D. Santana, Field-receiver model validation against Solar Two tests. Renew. Sustain. Energy Rev. 110(May 2018), 43–52 (2019)

    Article  Google Scholar 

  47. Lillyvilleky, Aluminum Can Solar Heater (2017)

    Google Scholar 

  48. Dr. Drashco, DIY Solar Panels: The Ultimate Building Guide (2019)

    Google Scholar 

  49. S. Karki, K.R. Haapala, B.M. Fronk, Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl. Energy 254(July), 113649 (2019)

    Article  Google Scholar 

  50. G. Faure, M. Vallée, C. Paulus, T.Q. Tran, Impact of faults on the efficiency curve of flat plate solar collectors: a numerical analysis. J. Clean. Prod. 231, 794–804 (2019)

    Article  Google Scholar 

  51. A. Fudholi, K. Sopian, A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev. 102(Dec 2018), 333–345 (2019)

    Article  Google Scholar 

  52. V.V. Tyagi, N.L. Panwar, N.A. Rahim, R. Kothari, Review on solar air heating system with and without thermal energy storage system. Renew. Sustain. Energy Rev. 16(4), 2289–2303 (2012)

    Article  Google Scholar 

  53. S. Suman, M.K. Khan, M. Pathak, Performance enhancement of solar collectors—a review. Renew. Sustain. Energy Rev. 49, 192–210 (2015)

    Article  Google Scholar 

  54. R. Tang, W. Gao, Y. Yamei, H. Chen, Optimal tilt-angles of all-glass evacuated tube solar collectors. Energy 34(9), 1387–1395 (2009)

    Article  Google Scholar 

  55. E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010)

    Article  Google Scholar 

  56. L.M. Ayompe, A. Duffy, M. Mc. Keever, M. Conlon, S.J. McCormack, Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy 36(5), 3370–3378 (2011)

    Article  Google Scholar 

  57. A. Ibrahim, M.Y. Othman, M.H. Ruslan, S. Mat, K. Sopian, Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 15(1), 352–365 (2011)

    Article  Google Scholar 

  58. W. Pang, Y. Cui, Q. Zhang, Y. Hongwen, L. Zhang, H. Yan, Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Sol. Energy 188(June), 1360–1368 (2019)

    Article  Google Scholar 

  59. M. Valizadeh, F. Sarhaddi, M. Adeli, Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector. Renew. Energy 138, 1028–1041 (2019)

    Article  Google Scholar 

  60. M.A. Sharafeldin, G. Gróf, O. Mahian, Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy 141, 2436–2444 (2017)

    Article  Google Scholar 

  61. M.A. Sharafeldin, G. Gróf, Evacuated tube solar collector performance using CeO2/water nanofluid. J. Clean. Prod. 185, 347–356 (2018)

    Article  Google Scholar 

  62. K. Farhana, K. Kadirgama, M.M. Rahman, D. Ramasamy, M.M. Noor, G. Najafi, M. Samykano, A.S.F. Mahamude, Improvement in the performance of solar collectors with nanofluids—a state-of-the-art review. Nano-Struct. Nano-Objects 18 (2019)

    Article  Google Scholar 

  63. D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications. Particuology 7(2), 141–150 (2009)

    Article  Google Scholar 

  64. G. Colangelo, E. Favale, P. Miglietta, M. Milanese, A. de Risi, Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 95, 124–136 (2016)

    Article  Google Scholar 

  65. M.E. Zayed, J. Zhao, Y. Du, A.E. Kabeel, S.M. Shalaby, Factors affecting the thermal performance of the flat plate solar collector using nanofluids: a review. Sol. Energy 182(Nov 2018), 382–396 (2019)

    Article  Google Scholar 

  66. J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51(11–12), 2651–2656 (2008)

    Article  Google Scholar 

  67. R. Bubbico, G.P. Celata, F. D’Annibale, B. Mazzarotta, C. Menale, Experimental analysis of corrosion and erosion phenomena on metal surfaces by nanofluids. Chem. Eng. Res. Des. 104, 605–614 (2015)

    Article  Google Scholar 

  68. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  Google Scholar 

  69. U. Pillai, Drivers of cost reduction in solar photovoltaics. Energy Econ. 50, 286–293 (2015)

    Article  Google Scholar 

  70. G. Kavlak, J. McNerney, J.E. Trancik, Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123(October), 700–710 (2018)

    Article  Google Scholar 

  71. Y. Xu, J. Li, Q. Tan, A.L. Peters, C. Yang, Global status of recycling waste solar panels: a review. Waste Manag. 75, 450–458 (2018)

    Article  Google Scholar 

  72. B. Augustine, K. Remes, G.S. Lorite, J. Varghese, T. Fabritius, Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment. Sol. Energy Mater. Sol. Cells 194(January), 74–82 (2019)

    Article  Google Scholar 

  73. M. Fitra, I. Daut, M. Irwanto, N. Gomesh, Y.M. Irwan, TiO2 dye sensitized solar cells cathode using recycle battery. Energy Procedia 36, 333–340 (2013)

    Article  Google Scholar 

  74. A.M.K. Gustafsson, M.R.S.J. Foreman, C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials. Waste Manag. 34(10), 1775–1782 (2014)

    Article  Google Scholar 

  75. W.H. Huang, W.J. Shin, L. Wang, W.C. Sun, M. Tao, Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 144, 22–31 (2017)

    Article  Google Scholar 

  76. P. Mandal, S. Sharma, Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sustain. Energy Rev. 65, 537–552 (2016)

    Article  Google Scholar 

  77. M.K. Sahoo, P. Kale, Integration of silicon nanowires in solar cell structure for efficiency enhancement: a review. J. Materiomics 5(1), 34–48 (2019)

    Article  Google Scholar 

  78. D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn, Y.S. Cho, A review on binary metal sulfide heterojunction solar cells. Sol. Energy Mater. Sol Cells 200(May), 109963 (2019)

    Article  Google Scholar 

  79. M.S. Mozumder, A.H.I. Mourad, H. Pervez, R. Surkatti, Recent developments in multifunctional coatings for solar panel applications: a review. Sol. Energy Mater. Sol. Cells 189(June 2018), 75–102 (2019)

    Article  Google Scholar 

  80. Y. Galagan, E.W.C. Coenen, S. Sabik, H.H. Gorter, M. Barink, S.C. Veenstra, J.M. Kroon, R. Andriessen, P.W.M. Blom, Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Sol. Energy Mater. Sol. Cells 104, 32–38 (2012)

    Article  Google Scholar 

  81. B. Gerdes, M. Jehle, N. Lass, L. Riegger, A. Spribille, M. Linse, F. Clement, R. Zengerle, P. Koltay, Front side metallization of silicon solar cells by direct printing of molten metal. Sol. Energy Mater. Sol. Cells 180(February), 83–90 (2018)

    Article  Google Scholar 

  82. J.-M. Delgado-Sanchez, Solar Energy Materials and Solar Cells Luminescent solar concentrators: photo-stability analysis and long-term perspectives. Sol. Energy Mater. Sol. Cells 202(July), 110134 (2019)

    Article  Google Scholar 

  83. X. Cong, Z. Zhang, H. Yue, Y. Sheng, P. Jiang, H. Han, J. Zhang, Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive. J. Energy Chem. 27(3), 764–768 (2018)

    Article  Google Scholar 

  84. J. Maçaira, L. Andrade, A. Mendes, Laser sealed dye-sensitized solar cells: efficiency and long term stability. Sol. Energy Mater. Sol. Cells 157, 134–138 (2016)

    Article  Google Scholar 

  85. B. Wang, First Commercial Perovskite Solar Late in 2019 and the Road to Moving the Energy Needle (2019)

    Google Scholar 

  86. M.A. Mutalib, F. Aziz, A.F. Ismail, W.N.W. Salleh, N. Yusof, J. Jaafar, T. Soga, M.Z. Sahdan, N.A. Ludin, Towards high performance perovskite solar cells: a review of morphological control and HTM development. Appl. Mater. Today 13, 69–82 (2018)

    Google Scholar 

  87. D.J. Friedman, Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr. Opin. Solid State Mater. Sci. 14(6), 131–138 (2010)

    Article  Google Scholar 

  88. Q. Wali, N.K. Elumalai, Y. Iqbal, A. Uddin, R. Jose (2018) Tandem perovskite solar cells. Renew Sustain Energy Rev. 84(Jan), 89–110 (2018)

    Article  Google Scholar 

  89. J. Day, S. Senthilarasu, T.K. Mallick, Improving spectral modification for applications in solar cells: a review. Renew. Energy 132, 186–205 (2019)

    Article  Google Scholar 

  90. P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)

    Article  Google Scholar 

  91. A. Lozano-Medina, L. Manzano, J.D. Marcos, A.M. Blanco-Marigorta, Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria. Energy 183, 803–811 (2019)

    Article  Google Scholar 

  92. M. Ghorab, E. Entchev, L. Yang, Inclusive analysis and performance evaluation of solar domestic hot water system (a case study). Alex. Eng. J. 56(2), 201–212 (2017)

    Article  Google Scholar 

  93. S. Karki, K.R. Haapala, B.M. Fronk, Investigation of the combined efficiency of a solar/gas hybrid water heating system. Appl. Therm. Eng. 149(Sept 2018), 1035–1043 (2019)

    Article  Google Scholar 

  94. J.P. Holman (ed.), Heat Transfer. McGraw-Hil:l Series in Mechanical Engineering, 10th edn. (2009)

    Google Scholar 

  95. I. Subedi, T.J. Silverman, M.G. Deceglie, N.J. Podraza, Emissivity of solar cell cover glass calculated from infrared reflectance measurements. Sol. Energy Mater. Sol. Cells 190(Sept 2018), 98–102 (2019)

    Article  Google Scholar 

  96. M. Martin, K. Holge, VDI Heat Atlas, 2nd edn. (pringer, Berlin, 2010)

    Google Scholar 

  97. P. Hevia-Koch, J. Ladenburg, Where should wind energy be located? A review of preferences and visualisation approaches for wind turbine locations. Energy Res. Soc. Sci. 53(February), 23–33 (2019)

    Article  Google Scholar 

  98. M. Harper, B. Anderson, P.A.B. James, A.B.S. Bahaj, Onshore wind and the likelihood of planning acceptance: learning from a Great Britain context. Energy Policy 128(Dec 2018), 954–966 (2019)

    Google Scholar 

  99. K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M.T.H. Reid, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Radiative heat transfer in the extreme near field. Nature 528(7582), 387–391 (2015)

    Article  Google Scholar 

  100. P. Scherhaufer, S. Höltinger, B. Salak, T. Schauppenlehner, J. Schmidt, A participatory integrated assessment of the social acceptance of wind energy. Energy Res. Soc. Sci. 45(Nov 2017), 164–172 (2018)

    Article  Google Scholar 

  101. E. Nordman, J. Mutinda, Biodiversity and wind energy in Kenya: revealing landscape and wind turbine perceptions in the world’s wildlife capital. Energy Res. Soc. Sci. 19, 108–118 (2016)

    Article  Google Scholar 

  102. J.-S. Chou, O. Yu-Chen, K.-Y. Lin, Collapse mechanism and risk management of wind turbine tower in strong wind. J. Wind Eng. Ind. Aerodyn. 193(July), 103962 (2019)

    Article  Google Scholar 

  103. S.R. Brouwer, S.H.S. Al-Jibouri, I.C. Cárdenas, J.I.M. Halman, Towards analysing risks to public safety from wind turbines. Reliab. Eng. Syst. Saf. 180(Nov 2016), 77–87 (2018)

    Article  Google Scholar 

  104. F.O.M. Carneiro, H.H.B. Rocha, P.A.C. Rocha, Investigation of possible societal risk associated with wind power generation systems. Renew. Sustain. Energy Rev. 19, 30–36 (2013)

    Google Scholar 

  105. S. Deshmukh, S. Bhattacharya, A. Jain, A.R. Paul, Wind turbine noise and its mitigation techniques: a review. Energy Procedia 160(2018), 633–640 (2019)

    Article  Google Scholar 

  106. S.S. Rodrigues, A.C. Marta, On addressing wind turbine noise with after-market shape blade add-ons. Renew Energy 140, 602–614 (2019)

    Article  Google Scholar 

  107. L. Fredianelli, S. Carpita, G. Licitra, A procedure for deriving wind turbine noise limits by taking into account annoyance. Sci. Total Environ. 648, 728–736 (2019)

    Article  Google Scholar 

  108. E.V. Bräuner, J.T. Jørgensen, A.K. Duun-Henriksen, C. Backalarz, J.E. Laursen, T.H. Pedersen, M.K. Simonsen, Z.J. Andersen, Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the Danish Nurse cohort. Environ Int. 130(Mar), 104915 (2019)

    Article  Google Scholar 

  109. J. Chen, F. Wang, K.A. Stelson, A mathematical approach to minimizing the cost of energy for large utility wind turbines. Appl. Energy 228(June), 1413–1422 (2018)

    Article  Google Scholar 

  110. D. Song, J. Liu, J. Yang, M. Su, S. Yang, X. Yang, Y.H. Joo, Multi-objective energy-cost design optimization for the variable-speed wind turbine at high-altitude sites. Energy Convers. Manag. 196(Jan), 513–524 (2019)

    Article  Google Scholar 

  111. D. Lande-Sudall, T. Stallard, P. Stansby, Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renew. Sustain. Energy Rev. 104(February), 492–503 (2019)

    Article  Google Scholar 

  112. P. Enevoldsen, F.H. Permien, I. Bakhtaoui, A.K. von Krauland, M.Z. Jacobson, G. Xydis, B.K. Sovacool, S.V. Valentine, D. Luecht, G. Oxley, How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas. Energy Policy, 132(Apr), 1092–1100 (2019)

    Article  Google Scholar 

  113. D.S. Ryberg, D.G. Caglayan, S. Schmitt, J. Linßen, D. Stolten, M. Robinius, Detailed distribution and simulation of advanced turbine designs. The future of European onshore wind energy potential. Energy 182, 1222–1238 (2019)

    Article  Google Scholar 

  114. A. Bahrami, A. Teimourian, C.O. Okoye, H. Shiri, Technical and economic analysis of wind energy potential in Uzbekistan. J. Clean. Prod. 223, 801–814 (2019)

    Article  Google Scholar 

  115. A.M. Kaynia, Seismic considerations in design of offshore wind turbines. Soil Dyn. Earthq. Eng. 124(Sept 2017), 399–407 (2019)

    Article  Google Scholar 

  116. B. Yeter, Y. Garbatov, C.G. Soares, Risk-based life-cycle assessment of offshore wind turbine support structures accounting for economic constraints. Struct. Saf. 81(June), 101867 (2019)

    Article  Google Scholar 

  117. X. Wu, Y. Hu, Y. Li, J. Yang, L. Duan, T. Wang, T. Adcock, Z. Jiang, Z. Gao, Z. Lin, A. Borthwick, S. Liao, Foundations of offshore wind turbines: a review. Renew. Sustain. Energy Rev. 104(Dec 2018), 379–393 (2019)

    Article  Google Scholar 

  118. Y. Zhao, Z. Cheng, P.C. Sandvik, Z. Gao, T. Moan, An integrated dynamic analysis method for simulating installation of single blades for wind turbines. Ocean Eng. 152(7491), 72–88 (2018)

    Article  Google Scholar 

  119. Z. Ren, R. Skjetne, Z. Jiang, Z. Gao, A.S. Verma, Integrated GNSS/IMU hub motion estimator for offshore wind turbine blade installation. Mech. Syst. Signal Process. 123, 222–243 (2019)

    Article  Google Scholar 

  120. B.R. Sarker, T.I. Faiz, Minimizing transportation and installation costs for turbines in offshore wind farms. Renew. Energy 101, 667–679 (2017)

    Article  Google Scholar 

  121. A.Z. Dhunny, Z. Allam, D. Lobine, M.R. Lollchund, Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy 185, 1282–1297 (2019)

    Article  Google Scholar 

  122. D. Ferreira, C. Freixo, J.A. Cabral, M. Santos, Is wind energy increasing the impact of socio-ecological change on Mediterranean mountain ecosystems? Insights from a modelling study relating wind power boost options with a declining species. J. Environ. Manag. 238(Feb), 283–295 (2019)

    Article  Google Scholar 

  123. K. Barré, I. Le Viol, Y. Bas, R. Julliard, C. Kerbiriou, Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biolog. Conserv. 226(August), 205–214 (2018)

    Article  Google Scholar 

  124. K.F. Forbes, E.M. Zampelli, Wind energy, the price of carbon allowances, and CO2 emissions: evidence from Ireland. Energy Policy 133(July), 110871 (2019)

    Article  Google Scholar 

  125. E. Rusu, F. Onea, An assessment of the wind and wave power potential in the island environment. Energy 175, 830–846 (2019)

    Article  Google Scholar 

  126. M. Veigas, G. Iglesias, Wave and offshore wind potential for the island of Tenerife. Energy Convers. Manag. 76, 738–745 (2013)

    Article  Google Scholar 

  127. E.G. Sakka, D.V. Bilionis, D. Vamvatsikos, C.J. Gantes, Onshore wind farm siting prioritization based on investment profitability for Greece. Renew. Energy (2019)

    Google Scholar 

  128. G. Gualtieri, A novel method for wind farm layout optimization based on wind turbine selection. Energy Convers. Manag. 193(April), 106–123 (2019)

    Article  Google Scholar 

  129. H. Sun, H. Yang, X. Gao, Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines. Energy 168(2019), 637–650 (2019)

    Google Scholar 

  130. L. Wang, M.E. Cholette, Y. Zhou, J. Yuan, A.C.C. Tan, Y. Gu, Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization. Renew. Energy 126, 819–829 (2018)

    Article  Google Scholar 

  131. F. Haces-Fernandez, H. Li, D. Ramirez, Improving wind farm power output through deactivating selected wind turbines. Energy Convers. Manag. 187(March), 407–422 (2019)

    Article  Google Scholar 

  132. F. Toja-Silva, T. Kono, C. Peralta, O. Lopez-Garcia, J. Chen, A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind Eng. Ind. Aerodyn. 180(July), 66–87 (2018)

    Article  Google Scholar 

  133. F. Toja-Silva, C. Peralta, O. Lopez-Garcia, J. Navarro, I. Cruz, Roof region dependent wind potential assessment with different RANS turbulence models. J. Wind Eng. Ind. Aerodyn. 142, 258–271 (2015)

    Article  Google Scholar 

  134. I. Abohela, N. Hamza, S. Dudek, Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew. Energy 50, 1106–1118 (2013)

    Article  Google Scholar 

  135. A.S. Yang, Y.M. Su, C.Y. Wen, Y.H. Juan, W.S. Wang, C.H. Cheng, Estimation of wind power generation in dense urban area. Appl. Energy 171, 213–230 (2016)

    Article  Google Scholar 

  136. S. Watson, A. Moro, V. Reis, C. Baniotopoulos, S. Barth, G. Bartoli, F. Bauer, E. Boelman, D. Bosse, A. Cherubini, A. Croce, L. Fagiano, M. Fontana, A. Gambier, K. Gkoumas, C. Golightly, M.I. Latour, P. Jamieson, J. Kaldellis, A. Macdonald, J. Murphy, M. Muskulus, F. Petrini, L. Pigolotti, F. Rasmussen, P. Schild, R. Schmehl, N. Stavridou, J. Tande, N. Taylor, T. Telsnig, R. Wiser, Future emerging technologies in the wind power sector: a European perspective. Renew. Sustain. Energy Rev. 113(June), 109270 (2019)

    Article  Google Scholar 

  137. J. Dai, W. Yang, J. Cao, D. Liu, X. Long, Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data. Renew. Energy 116, 199–208 (2018)

    Article  Google Scholar 

  138. A.G. Alexandrov, V.N. Chestnov, V.A. Alexandrov, Identification based control for wind turbine. IFAC-PapersOnLine 50(1), 2272–2277 (2017)

    Article  Google Scholar 

  139. M. Narayana, K.M. Sunderland, G. Putrus, M.F. Conlon, Adaptive linear prediction for optimal control of wind turbines. Renew. Energy 113, 895–906 (2017)

    Article  Google Scholar 

  140. A. Azizi, H. Nourisola, S. Shoja-Majidabad, Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller. Renew. Energy 135, 55–65 (2019)

    Article  Google Scholar 

  141. M.G. Khalfallah, A.M. Koliub, Effect of dust on the performance of wind turbines. Desalination 209(1–3 SPEC ISS.), 209–220 (2007)

    Article  Google Scholar 

  142. E. Sagol, M. Reggio, A. Ilinca, Issues concerning roughness on wind turbine blades. Renew. Sustain. Energy Rev. 23, 514–525 (2013)

    Article  Google Scholar 

  143. A. González-González, D. Galar, Condition monitoring of wind turbine pitch controller: a maintenance approach. Measurement 123(January), 80–93 (2017)

    Google Scholar 

  144. M.L. Corradini, G. Ippoliti, G. Orlando, An observer-based blade-pitch controller of wind turbines in high wind speeds. Control Eng. Pract. 58(Feb 2016), 186–192 (2017)

    Article  Google Scholar 

  145. J. Lan, R.J. Patton, X. Zhu, Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renew. Energy 116, 219–231 (2018)

    Article  Google Scholar 

  146. V. Irizar, C.S. Andreasen, Hydraulic pitch control system for wind turbines: advanced modeling and verification of an hydraulic accumulator. Simul. Model. Pract. Theory 79, 1–22 (2017)

    Article  Google Scholar 

  147. American Roller Bearing Company, Friction & Frequency Factors (2013)

    Google Scholar 

  148. ONYX InSight, Wind Turbine Fire due to Mechanical Failure (2018)

    Google Scholar 

  149. R. Brooks, Lessons Learned: common wind turbine bearing failures, costs & solutions, in 4th Wind Operations & Maintenance Canada 2017 Conference, Toronto (2017)

    Google Scholar 

  150. O. Tonks, Q. Wang, The detection of wind turbine shaft misalignment using temperature monitoring. CIRP J. Manuf. Sci. Technol. 17, 71–79 (2017)

    Article  Google Scholar 

  151. H. Polinder, F.F.A. Van Der Pijl, G.J. De Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21(3), 725–733 (2006)

    Article  Google Scholar 

  152. C.M.C.G. Fernandes, L. Blazquez, J. Sanesteban, R.C. Martins, J.H.O. Seabra, Energy efficiency tests in a full scale wind turbine gearbox. Tribol. Int. 101, 375–382 (2016)

    Article  Google Scholar 

  153. J.P. Salameh, S. Cauet, E. Etien, A. Sakout, L. Rambault, Gearbox condition monitoring in wind turbines: a review. Mech. Syst. Signal Process. 111, 251–264 (2018)

    Article  Google Scholar 

  154. S. Shanbr, F. Elasha, M. Elforjani, J. Teixeira, Detection of natural crack in wind turbine gearbox. Renew. Energy 118, 172–179 (2018)

    Article  Google Scholar 

  155. U. Bhardwaj, A.P. Teixeira, C.G. Soares, Reliability prediction of bearings of an offshore wind turbine gearbox in Advances in Renewable Energies Offshore—Proceedings of the 3rd International Conference on Renewable Energies Offshore, RENEW 2018 vol. 141, pp. 779–787 (2019)

    Google Scholar 

  156. W. Teng, X. Ding, Y. Zhang, Y. Liu, Z. Ma, Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mech. Syst. Signal Process. 87(June 2016), 279–293 (2017)

    Article  Google Scholar 

  157. J. Lloberas, A. Sumper, M. Sanmarti, X. Granados, A review of high temperature superconductors for offshore wind power synchronous generators (2014)

    Article  Google Scholar 

  158. W.C. Sant’Ana, C.P. Salomon, G. Lambert-Torres, L.E. Borges da Silva, E.L. Bonaldi, L.E. de Lacerda de Oliveira, J.G.B. da Silva, Early detection of insulation failures on electric generators through online Frequency Response Analysis. Electr. Power Syst. Res. 140, 337–343 (2016)

    Google Scholar 

  159. X. Jin, J. Wenbin, Z. Zhang, L. Guo, X. Yang, System safety analysis of large wind turbines. Renew. Sustain. Energy Rev. 56, 1293–1307 (2016)

    Article  Google Scholar 

  160. M.-Y. Cheng, Y.-F. Wu, Y.-W. Wu, S. Ndure, Fuzzy Bayesian schedule risk network for offshore wind turbine installation. Ocean Eng. 188(Dec 2018), 106238 (2019)

    Article  Google Scholar 

  161. X. Liu, L. Bo, H. Luo, Dynamical measurement system for wind turbine fatigue load. Renew. Energy 86, 909–921 (2016)

    Article  Google Scholar 

  162. Z. Fan, C. Zhu, The optimization and the application for the wind turbine power-wind speed curve. Renew. Energy 140, 52–61 (2019)

    Article  Google Scholar 

  163. The Royal Academy of Engineering, Wind Turbine Power Calculations. Technical report, RWE Npower Ltd. (2009)

    Google Scholar 

  164. K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (Wiley-Vch, New York, NY, 1990)

    Google Scholar 

  165. W.C. Gardiner Jr. (ed.), Gas-Phase Combustion Chemistry, 2nd edn. (Springer, New York, Austin, TX, 2000)

    Google Scholar 

  166. T. Turányi, A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  167. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards Inc., Philadelphia, USA, 2005)

    Google Scholar 

  168. C.K. Law, Combustion Physics (Cambridge University Press, NJ, 2010)

    Google Scholar 

  169. T. Lieuwen, Unsteady Combustor Physics (Cambridge University Press, New York, NY, 2012)

    Book  MATH  Google Scholar 

  170. R.J. Reed, North American Combustion Handbook, vol. 1, 3rd edn. (North American Mfg. Co., Claveland, OH, 1986)

    Google Scholar 

  171. R.J. Reed, North American Combustion Handbook, vol. 2, 3rd edn. (North American Mfg. Co., Cleveland, OH, 1997)

    Google Scholar 

  172. P. Basu, C. Kefa, L. Jestin, Boilers and Burners: Design and Theory (Springer, New York, NY, 2000)

    Book  Google Scholar 

  173. A.H. Lefebvre, D.R. Ballal, Gas Turbine Combustion, 3rd edn. (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  174. N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015)

    Article  Google Scholar 

  175. P. Bórawski, A. Bełdycka-Bórawska, E.J. Szymańska, K.J. Jankowski, B. Dubis, J.W. Dunn, Development of renewable energy sources market and biofuels in The European Union. J. Clean. Prod. 228, 467–484 (2019)

    Article  Google Scholar 

  176. T. Wilberforce, Z. El-Hassan, F.N. Khatib, A. Al Makky, A. Baroutaji, J.G. Carton, A.G. Olabi, Developments of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrog. Energy 42(40), 25695–25734 (2017)

    Article  Google Scholar 

  177. J. Shin, W.S. Hwang, H. Choi, Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles. Technol. Forecast. Soc. Change 143(Jan), 239–248 (2019)

    Article  Google Scholar 

  178. M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, Y. Fang, Biomass-derived aviation fuels: challenges and perspective. Prog. Energy Combust. Sci. 74, 31–49 (2019)

    Article  Google Scholar 

  179. H. Wei, W. Liu, X. Chen, Q. Yang, J. Li, H. Chen, Renewable bio-jet fuel production for aviation: a review (2019)

    Google Scholar 

  180. H.-G. Chen, Y.-H.P. Zhang, New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew. Sustain. Energy Rev. 47, 117–132 (2015)

    Article  Google Scholar 

  181. C. Zheng, Z. Liu (eds.), Oxy-Fuel Combustion: Fundamentals, Theory and Practice (Academic Press, 2018)

    Google Scholar 

  182. R. Prieler, P. Bělohradský, B. Mayr, A. Rinner, C. Hochenauer, Validation of turbulence/chemistry interaction models for use in Oxygen enhanced combustion. Energy Procedia 120, 548–555 (2017)

    Article  Google Scholar 

  183. F. Xing, A. Kumar, Y. Huang, S. Chan, C. Ruan, G. Sai, X. Fan, Flameless combustion with liquid fuel: a review focusing on fundamentals and gas turbine application. Appl. Energy 193, 28–51 (2017)

    Article  Google Scholar 

  184. A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018)

    Article  Google Scholar 

  185. M.G. Božo, M.O. Vigueras-Zuniga, M. Buffi, T. Seljak, A. Valera-Medina, Fuel rich ammonia-hydrogen injection for humidified gas turbines. Appl. Energy 251(Dec 2018) (2019)

    Google Scholar 

  186. B. Anderhofstadt, S. Spinler, Factors affecting the purchasing decision and operation of alternative fuel-powered heavy-duty trucks in Germany–A Delphi study. Transport. Res. Part D: Transp. Environ. 73(Nov 2018):87–107, 2019

    Article  Google Scholar 

  187. J.M. Beér, N.A. Chigier, Combustion Aerodynamics (Robert E. Krieger Publishing Company Inc, London, 1972)

    Google Scholar 

  188. R. Borghi, Turbulent combustion modelling (1988)

    Article  Google Scholar 

  189. D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)

    Article  Google Scholar 

  190. E.D. Gonzalez-Juez, A.R. Kerstein, R. Ranjan, S. Menon, Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog. Energy Combust. Sci. 60, 26–67 (2017)

    Google Scholar 

  191. F.Q. Zhao, H. Hiroyasu, The applications of laser Rayleigh scattering to combustion diagnostics. Prog. Energy Combust. Sci. 19(6), 447–485 (1993)

    Article  Google Scholar 

  192. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Combustion at the focus: laser diagnostics and control. Proc. Combust. Inst. 30(1), 89–123 (2005)

    Article  Google Scholar 

  193. R.S. Barlow, Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31I(1), 49–75 (2007)

    Article  Google Scholar 

  194. H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36(1), 717–735 (2017)

    Article  Google Scholar 

  195. J. Jedelsky, M. Maly, N.P. del Corral, G. Wigley, L. Janackova, M. Jicha, Air–liquid interactions in a pressure-swirl spray. Int. J. Heat Mass Transf. 121, 788–804 (2018)

    Article  Google Scholar 

  196. Z. Petranović, W. Edelbauer, M. Vujanović, N. Duić, Modelling of spray and combustion processes by using the Eulerian multiphase approach and detailed chemical kinetics. Fuel 191, 25–35 (2017)

    Article  Google Scholar 

  197. A. Urbán, V. Józsa, A. Urbán, V. Józsa, A. Urbán, V. Józsa, Investigation of fuel atomization with density functions. Period. Polytech. Mech. Eng. 62(1), 33–41 (2018)

    Article  Google Scholar 

  198. D. Csemány, V. Józsa, Fuel Evaporation in an atmospheric premixed burner: sensitivity analysis and spray vaporization. Processes 5(4), 80 (2017)

    Article  Google Scholar 

  199. E. Filimonova, A. Bocharov, V. Bityurin, Influence of a non-equilibrium discharge impact on the low temperature combustion stage in the HCCI engine. Fuel 228, 309–322 (2018)

    Article  Google Scholar 

  200. X. Liu, Y. Sage Kokjohn, L.H. Wang, H. Li, M. Yao, A numerical investigation of the combustion kinetics of reactivity controlled compression ignition (RCCI) combustion in an optical engine. Fuel 241, 753–766 (2019)

    Article  Google Scholar 

  201. T. Pachiannan, W. Zhong, S. Rajkumar, Z. He, X. Leng, Q. Wang, A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies (2019)

    Google Scholar 

  202. National Institute of Standards and Technology, Material Measurement Laboratory (2019). www.nist.gov/mml

  203. I. Glassman, R. Yetter, Combustion, 4th edn. (Academic Press, Burlington, 2008)

    Google Scholar 

  204. S. Tsuboi, S. Miyokawa, M. Matsuda, T. Yokomori, N. Iida, Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine. Appl. Energy 250(January), 617–632 (2019)

    Article  Google Scholar 

  205. P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67, 31–68 (2018)

    Article  Google Scholar 

  206. I.M. Kennedy, Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23(2), 95–132 (1997)

    Article  Google Scholar 

  207. A.E. Karataş, Ö.L. Gülder, Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 38(6), 818–845 (2012)

    Article  Google Scholar 

  208. Y. Wang, S.H. Chung, Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74, 152–238 (2019)

    Article  Google Scholar 

  209. S.M. Correa, A review of NOx formation under gas-turbine combustion conditions. Combust. Sci. Technol. 87(1–6), 329–362 (1993)

    Article  Google Scholar 

  210. A.G. Gaydon, The Spectroscopy of Flames, 2nd edn. (Chapman and Hall Ltd., London, 1974)

    Book  Google Scholar 

  211. V. Józsa, A. Kun-balog, Spectroscopic analysis of crude rapeseed oil flame. Fuel Process. Technol. 139, 61–66 (2015)

    Article  Google Scholar 

  212. C.T. Chong, M.-C. Chiong, J.-H. Ng, M. Lim, M.-V. Tran, A. Valera-Medina, W.W.F. Chong, Oxygenated sunflower biodiesel: spectroscopic and emissions quantification under reacting swirl spray conditions. Energy 178, 804–813 (2019)

    Article  Google Scholar 

  213. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  214. ANSYS Inc. ANSYS Fluent Theory Guide 2019 R2 (2019)

    Google Scholar 

  215. S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002)

    Article  Google Scholar 

  216. Y. Shi, X. Zhang, F. Li, L. Ma, Engineering acid dew temperature: the limitation for flue gas heat recovery. Chin. Sci. Bull. 59(33), 4418–4425 (2014)

    Article  Google Scholar 

  217. A.P. Rossiter, B.P. Jones (eds.), Energy Management and Efficiency for the Process Industries (Wiley, 2015)

    Google Scholar 

  218. H. Struchtrup, Thermodyn. Energy Convers. (Springer, Heidelberg, 2014)

    Google Scholar 

  219. B. Kılkış, Ş. Kılkłş, New exergy metrics for energy, environment, and economy nexus and optimum design model for nearly-zero exergy airport (nZEXAP) systems. Energy 140, 1329–1349 (2017)

    Article  Google Scholar 

  220. C. Michalakakis, J.M. Cullen, A.G. Hernandez, B. Hallmark, Exergy and network analysis of chemical sites. Sustain. Prod. Consum. 1–19 (2019)

    Google Scholar 

  221. Y. Huang, V. Yang, Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35(4), 293–364 (2009)

    Article  Google Scholar 

  222. W. Meier, X.R. Duan, P. Weigand, Investigations of swirl flames in a gas turbine model combustor, II. Turbulence-chemistry interactions. Combust. Flame 144(1–2), 225–236 (2006)

    Article  Google Scholar 

  223. S. Taamallah, Z.A. LaBry, S.J. Shanbhogue, M.A.M. Habib, A.F. Ghoniem, Correspondence between “Stable” flame macrostructure and thermo-acoustic instability in premixed swirl-stabilized turbulent combustion. J. Eng. Gas Turbines Power 137(7), 071505 (2015)

    Google Scholar 

  224. R.W. Francisco, A.A.M. Oliveira, Simultaneous measurement of the adiabatic flame velocity and overall activation energy using a flat flame burner and a flame asymptotic model. Exp. Therm. Fluid Sci. 90(Mar 2017), 174–185 (2018)

    Article  Google Scholar 

  225. X. Han, Z. Wang, S. Wang, R. Whiddon, Y. He, Y. Lv, A.A. Konnov, Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel 239(Nov 2018), 1028–1037 (2019)

    Article  Google Scholar 

  226. A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Prog. Energy Combust. Sci. 68, 197–267, (2018)

    Article  Google Scholar 

  227. Bioenergy Advice, Composition of wood (2019)

    Google Scholar 

  228. S. Van Loo, J. Koppejan (eds.), The Handbook of Biomass Combustion and Co-firing (Routledge, London, 2008)

    Google Scholar 

  229. E. Fooladgar, P. Tóth, C. Duwig, Characterization of flameless combustion in a model gas turbine combustor using a novel post-processing tool. Combust. Flame 204, 356–367 (2019)

    Article  Google Scholar 

  230. A.A.V. Perpignan, A.G. Rao, D.J.E.M. Roekaerts, Flameless combustion and its potential towards gas turbines (2018)

    Google Scholar 

  231. K.I. Khidr, Y.A. Eldrainy, M.M. EL-Kassaby, Towards lower gas turbine emissions: flameless distributed combustion. Renew. Sustain. Energy Rev. 67, 1237–1266 (2017)

    Article  Google Scholar 

  232. R. Amirante, P. De Palma, E. Distaso, P. Tamburrano, Thermodynamic analysis of small-scale externally fired gas turbines and combined cycles using turbo-compound components for energy generation from solid biomass. Energy Convers. Manag. 166(April), 648–662 (2018)

    Article  Google Scholar 

  233. O. Olumayegun, M. Wang, G. Kelsall, Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel 180, 694–717 (2016)

    Article  Google Scholar 

  234. J. Sachdeva, O. Singh, Thermodynamic analysis of solar powered triple combined Brayton, Rankine and Organic Rankine Cycle for carbon free power. Renew. Energy 139(2019), 765–780 (2019)

    Article  Google Scholar 

  235. C. Bernardoni, M. Binotti, A. Giostri, Techno-economic analysis of closed OTEC cycles for power generation. Renew. Energy 132, 1018–1033 (2019)

    Article  Google Scholar 

  236. C. Breidenich, D. Magraw, A. Rowley, J.W. Rubin, The Kyoto protocol to the united nations framework convention on climate change. Am. J. Int. Law 92(2), 315 (1998)

    Article  Google Scholar 

  237. M. Yang, H. Zhang, Z. Meng, Y. Qin, Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator. Appl. Therm. Eng. 146(Sept 2018), 540–547 (2019)

    Article  Google Scholar 

  238. V. Pethurajan, S. Sivan, G.C. Joy, Issues, comparisons, turbine selections and applications—an overview in Organic Rankine Cycle. Energy Convers. Manag. 166(March), 474–488 (2018)

    Article  Google Scholar 

  239. K.A. Abrosimov, A. Baccioli, A. Bischi, Techno-economic analysis of combined inverted Brayton-Organic Rankine Cycle for high-temperature waste heat recovery. Energy Convers. Manag.: X 3(June), 100014 (2019)

    Google Scholar 

  240. Q. Sun, Y. Wang, Z. Cheng, J. Wang, P. Zhao, Y. Dai, Thermodynamic optimization of a double-pressure Organic Rankine Cycle driven by geothermal heat source. Energy Procedia 129, 591–598 (2017)

    Article  Google Scholar 

  241. W.R. Huster, D. Bongartz, A. Mitsos, Deterministic global optimization of the design of a geothermal Organic Rankine Cycle. Energy Procedia 129, 50–57 (2017)

    Article  Google Scholar 

  242. S. Van Erdeweghe, J. Van Bael, B. Laenen, W. D’haeseleer, Design and off-design optimization procedure for low-temperature geothermal Organic Rankine Cycles. Appl. Energy 242(Feb), 716–731 (2019)

    Google Scholar 

  243. M. Ahmad, M. Schatz, M.V. Casey, Experimental investigation of droplet size influence on low pressure steam turbine blade erosion. Wear 303(1–2), 83–86 (2013)

    Article  Google Scholar 

  244. G. Györke, U.K. Deiters, A. Groniewsky, I. Lassu, A.R. Imre, Novel classification of pure working fluids for Organic Rankine Cycle. Energy 145, 288–300 (2018)

    Article  Google Scholar 

  245. A. Groniewsky, G. Györke, A.R. Imre, Description of wet-to-dry transition in model ORC working fluids. Appl. Therm. Eng. 125, 963–971 (2017)

    Article  Google Scholar 

  246. A. Groniewsky, A.R. Imre, Prediction of the ORC working fluid’s temperature-entropy saturation boundary using redlich-Kwong equation of state. Entropy 20(2), 1–8 (2018)

    Article  Google Scholar 

  247. A.R. Imre, R. Kustán, A. Groniewsky, Thermodynamic selection of the optimal working fluid for Organic Rankine Cycles. Energies 12(10), 1–15 (2019)

    Article  Google Scholar 

  248. Y. Zhao, G. Liu, L. Li, Q. Yang, B. Tang, Y. Liu, Expansion devices for Organic Rankine Cycle (ORC) using in low temperature heat recovery: a review. Energy Convers. Manag. 199(August), 111944 (2019)

    Article  Google Scholar 

  249. M. Saghafifar, A. Omar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part I—analysis, design, and optimization. Energy Convers. Manag. 1–59 (2018)

    Google Scholar 

  250. A. Omar, M. Saghafifar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part II—applications. Energy Convers. Manag. 180(Sept 2018), 559–583 (2019)

    Article  Google Scholar 

  251. W.B Nader, C. Mansour, C. Dumand, M. Nemer, Brayton cycles as waste heat recovery systems on series hybrid electric vehicles. Energy Convers. Manag. 168(Feb), 200–214 (2018)

    Article  Google Scholar 

  252. X. Li, H. Tian, G. Shu, M. Zhao, C.N. Markides, H. Chen, Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines. Appl. Energy 250(May), 1581–1599 (2019)

    Article  Google Scholar 

  253. P. Liu, G. Shu, H. Tian, How to approach optimal practical Organic Rankine Cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy 174, 543–552 (2019)

    Article  Google Scholar 

  254. C. Falter, R. Pitz-Paal, Energy analysis of solar thermochemical fuel production pathway with a focus on waste heat recuperation and vacuum generation. Sol. Energy 176(September), 230–240 (2018)

    Article  Google Scholar 

  255. M. Awais, A.A. Bhuiyan, Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers. Int. J. Heat Mass Transf. 141, 580–603 (2019)

    Article  Google Scholar 

  256. E. Wallhäußer, M.A. Hussein, T. Becker, Detection methods of fouling in heat exchangers in the food industry. Food Control 27(1), 1–10 (2012)

    Article  Google Scholar 

  257. M.J. Li, S.Z. Tang, F.l. Wang, Q.X. Zhao, W.Q. Tao, Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: a review on simulation and experiment. Appl. Therm. Eng. 126, 737–761 (2017)

    Article  Google Scholar 

  258. M. Trafczynski, M. Markowski, K. Urbaniec, Energy saving potential of a simple control strategy for heat exchanger network operation under fouling conditions. Renew. Sustain. Energy Rev. 111(May), 355–364 (2019)

    Article  Google Scholar 

  259. S.K. Singh, M. Mishra, P.K. Jha, Nonuniformities in compact heat exchangers—scope for better energy utilization: a review. Renew. Sustain. Energy Rev. 40, 583–596 (2014)

    Article  Google Scholar 

  260. S. Wang, Y. Xinquan, C. Liang, Y. Zhang, Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils. Appl. Therm. Eng. 137(April), 758–766 (2018)

    Article  Google Scholar 

  261. L. Herraiz, D. Hogg, J. Cooper, M. Lucquiaud, Reducing the water usage of post-combustion capture systems: The role of water condensation/evaporation in rotary regenerative gas/gas heat exchangers. Appl. Energy 239(July 2018), 434–453 (2019)

    Article  Google Scholar 

  262. F. Chemat, N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A.S. Fabiano-Tixier, M. Abert-Vian, Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 41(May), 357–377 (2017)

    Article  Google Scholar 

  263. M.V.D. Bonis, G. Ruocco, Heat and mass transfer modeling during continuous flow processing of fluid food by direct steam injection. Int. Commun. Heat Mass Transf. 37(3), 239–244 (2010)

    Article  Google Scholar 

  264. L. Chen, Y.L. Liu, J.L. Deng, Removal of phthalic acid esters from sea buckthorn (Hippophae rhamnoides L.) pulp oil by steam distillation and molecular distillation. Food Chem. 294(May), 572–577 (2019)

    Article  Google Scholar 

  265. X. Meng, Z. Wen, Y. Qian, Y. Hongbing, Evaluation of cleaner production technology integration for the Chinese herbal medicine industry using carbon flow analysis. J. Clean. Prod. 163, 49–57 (2017)

    Article  Google Scholar 

  266. F. Memarzadeh, Adding amines to steam for humidification. J. Chem. Health Saf. 21(4), 5–17 (2014)

    Article  Google Scholar 

  267. V. Gorobets, Y. Bohdan, V. Trokhaniak, I. Antypov, Investigations of heat transfer and hydrodynamics in heat exchangers with compact arrangements of tubes. Appl. Therm. Eng. 151(Dec 2018), 46–54 (2019)

    Article  Google Scholar 

  268. T. Muszynski, The influence of microjet array area ratio on heat transfer in the compact heat exchanger. Exp. Therm. Fluid Sci. 99(July), 336–343 (2018)

    Article  Google Scholar 

  269. M. Awais, A.A. Bhuiyan, Heat and mass transfer for compact heat exchanger (CHXs) design: a state-of-the-art review. Int. J. Heat Mass Transf. 127, 359–380 (2018)

    Article  Google Scholar 

  270. H. Mroue, J.B. Ramos, L.C. Wrobel, H. Jouhara, Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger. Appl. Therm. Eng. 78, 339–350 (2015)

    Article  Google Scholar 

  271. J. Choi, M. Jeong, J. Yoo, M. Seo, A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Appl. Therm. Eng. 44, 50–56 (2012)

    Article  Google Scholar 

  272. K.S. Kim, M.H. Won, J.W. Kim, B.J. Back, Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 23(9 SPEC.), 1137–1144 (2003)

    Article  Google Scholar 

  273. G. Zhou, J. Li, L. Lv, An ultra-thin miniature loop heat pipe cooler for mobile electronics. Appl. Therm. Eng. 109, 514–523 (2016)

    Article  Google Scholar 

  274. H. Shabgard, M.J. Allen, N. Sharifi, S.P. Benn, A. Faghri, T.L. Bergman, Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int. J. Heat Mass Transf. 89, 138–158 (2015)

    Article  Google Scholar 

  275. C. Wang, J. Chen, S. Qiu, W. Tian, D. Zhang, G.H. Su, Performance analysis of heat pipe radiator unit for space nuclear power reactor. Ann. Nucl. Energy 103, 74–84 (2017)

    Article  Google Scholar 

  276. L. Ge, L. Huaqi, S. Jianqiang, Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system. Ann. Nucl. Energy 130, 82–92 (2019)

    Article  Google Scholar 

  277. H.U. Oh, S. Shin, C.W. Baek, Thermal control of spaceborne image sensor using heat pipe cooling system. Aerosp. Sci. Technol. 29(1), 394–402 (2013)

    Article  Google Scholar 

  278. B. Zohuri, Heat Pipe Design and Technology, 2nd edn. (Springer International Publishing, 2016)

    Google Scholar 

  279. M. Liao, Z. He, C. Jiang, X. Fan, Y. Li, F. Qi, A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Appl. Therm. Eng. 133(January), 493–500 (2018)

    Article  Google Scholar 

  280. R. Merienne, J. Lynn, E. McSweeney, S.M. O’Shaughnessy, Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237(Nov 2018), 671–681 (2019)

    Article  Google Scholar 

  281. P. Wang, J.E. Li, B.L. Wang, T. Shimada, H. Hirakata, C. Zhang, Lifetime prediction of thermoelectric devices under thermal cycling. J. Power Sources 437(June), 226861 (2019)

    Article  Google Scholar 

  282. J.W. Stevens, Optimal design of small \(\Delta \)T thermoelectric generation systems. Energy Convers. Manag. 42(6), 709–720 (2001)

    Article  Google Scholar 

  283. P. Wang, B.L. Wang, J.E. Li, Temperature and performance modeling of thermoelectric generators. Int. J. Heat Mass Transf. 143, 118509 (2019)

    Article  Google Scholar 

  284. A. Allouhi, Advances on solar thermal cogeneration processes based on thermoelectric devices: a review. Sol Energy Mater. Sol. Cells 200(May), 109954 (2019)

    Article  Google Scholar 

  285. A. Singha, Optimized Peltier cooling via an array of quantum dots with stair-like ground-state energy configuration. Phys. Lett. Section A: Gen. At. Solid State Phys. 382(41), 3026–3030 (2018)

    Article  Google Scholar 

  286. H.H. Saber, S.A. AlShehri, W. Maref, Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. Energy Convers. Manag. 191(April), 174–192 (2019)

    Article  Google Scholar 

  287. C. Lundgaard, O. Sigmund, Design of segmented thermoelectric Peltier coolers by topology optimization. Appl. Energy 239(July 2018), 1003–1013 (2019)

    Article  Google Scholar 

  288. Y. Lyu, A.R.M. Siddique, S.H. Majid, M. Biglarbegian, S.A. Gadsden, S. Mahmud, Electric vehicle battery thermal management system with thermoelectric cooling. Energy Rep. 5, 822–827 (2019)

    Article  Google Scholar 

  289. L. van Dommelen, Quantum Mechanics for Engineers (2018)

    Google Scholar 

  290. G. Lebon, D. Jou, Understanding Non-equilibrium Thermodynamics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Józsa .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Józsa, V., Kovács, R. (2020). Applications in Renewable Energy. In: Solving Problems in Thermal Engineering. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-33475-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33475-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33474-1

  • Online ISBN: 978-3-030-33475-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics