Skip to main content

Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data (DART 2019, MIL3ID 2019)

Abstract

We cast the problem of image denoising as a domain translation problem between high and low noise domains. By modifying the cycleGAN model, we are able to learn a mapping between these domains on unpaired retinal optical coherence tomography images. In quantitative measurements and a qualitative evaluation by ophthalmologists, we show how this approach outperforms other established methods. The results indicate that the network differentiates subtle changes in the level of noise in the image. Further investigation of the model’s feature maps reveals that it has learned to distinguish retinal layers and other distinct regions of the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, S.G., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering, vol. 6064 (2006)

    Google Scholar 

  3. Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering applied to electron cryomicroscopy. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1331–1334 (2008)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  5. Halupka, K.J., et al.: Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Express 9(12), 6205–6221 (2018)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  7. Huang, Y., et al.: Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt. Express 27(9), 12289–12307 (2019)

    Article  Google Scholar 

  8. Joseph, M., Schmitt, S.H., Xiang, K.M.Y.: Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)

    Article  Google Scholar 

  9. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–169 (1987)

    Google Scholar 

  10. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016). http://distill.pub/2016/deconv-checkerboard

    Article  Google Scholar 

  11. Podoleanu, A.G.: Optical coherence tomography. J. Microsc. 247(3), 209–219 (2012)

    Article  Google Scholar 

  12. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  13. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilja Manakov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13394 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manakov, I., Rohm, M., Kern, C., Schworm, B., Kortuem, K., Tresp, V. (2019). Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation. In: Wang, Q., et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33391-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33390-4

  • Online ISBN: 978-3-030-33391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics