Skip to main content

Other Applications of Optical Clearing Agents

  • Chapter
  • First Online:
The Optical Clearing Method

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 387 Accesses

Abstract

In this chapter, other areas of application for optical clearing agents (OCAs) are presented. The osmotic properties of agents are highly important in dermatology, cosmetics, and pharmacology, if topical application to the skin is desired. After addressing this application in Sect. 8.2, tissue poisoning and discussing the osmotic properties of certain poisons or toxic compounds will be done in Sect. 8.3. The importance of evaluating the diffusion properties of those substances in the skin, eye, and other inner tissue is indicated as a tool for optimizing treatment or decontamination dosage and procedures. Section 8.4 is used to discuss the application of agents in food industry. The dehydration capabilities of certain agents, such as sodium chloride or glycerol, are presented, and the advantages of treating fruit, meat, or fish with sugars to improve their organoleptic properties during preservation are also presented. Finally, the application of OCAs for tissue or organ preservation is presented in Sect. 8.5, where some cases for preservation of eye tissues at room temperature made with glycerol will be discussed. The use of OCAs as cryoprotectants at low temperatures is also explained. In all these applications, we refer the applicability of the method described in Sect. 6.4 to evaluate the diffusion properties of water, poisons, or drugs for ex vivo tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.G. Cogan, Clearing of edematous corneas by glycerin. Am. J. Ophthalmol. 26(5), 551 (1943)

    Article  Google Scholar 

  2. K.C. Swan, A dehydrating jelly to clear corneal bedewing. AMA Arch. Ophthalmol. 50(1), 75–77 (1953)

    Article  Google Scholar 

  3. B. Duvall, R. Kershner, Ophthalmic Medications and Pharmacology, 2nd edn. (SLACK Inc., Thorofare, NJ, 2006), p. 42. Chapter 5

    Google Scholar 

  4. C. Costagliola, V. Romano, E. Forbice, M. Angi, A. Pascotto, T. Boccia, F. Semeraro, Corneal oedema and its medical treatment. Clin. Exp. Optom. 96, 529–535 (2013)

    Article  Google Scholar 

  5. D.M. Maurice, Clearing media for the eye. Br. J. Ophthalmol. 71, 470–472 (1987)

    Article  Google Scholar 

  6. V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006)

    Google Scholar 

  7. H. Schaefer, T.E. Redelmeier, Skin Barrier: Principles of Percutaneous Absorption (Karger, Basel, 1996)

    Google Scholar 

  8. F. Pirot, Y.N. Kalia, A.L. Stinchcomb, G. Keating, A. Bunge, R.H. Guy, Characterization of the permeable barrier of human skin in vivo. Proc. Natl. Acad. Sci. 94, 1562–1567 (1997)

    Article  ADS  Google Scholar 

  9. I.H. Blank, J. Moloney, A.G. Emslie, I. Simon, C. Apt, The diffusion of water across the stratum corneum as a function of its water content. J. Invest. Dermatol. 82, 188–194 (1984)

    Article  Google Scholar 

  10. T. von Zglinicki, M. Lindberg, G.H. Roomans, B. Forslind, Water and ion distribution profiles in human skin. Acta Derm. Venerol. 73, 340–343 (1993)

    Google Scholar 

  11. J.M. Bradner, Importance of tight junctions in relation to skin barrier function. Curr. Probl. Dermatol. 49, 27–37 (2016)

    Article  Google Scholar 

  12. N. Rutter, Drug absorption through the skin: a mixed blessing. Arch. Dis. Child. 62, 220–221 (1987)

    Article  Google Scholar 

  13. S. Mitragotri, Y.G. Anissimov, A.L. Bunge, H.F. Frasch, R.H. Guy, J. Hadgraft, G.B. Kasting, M.E. Lane, M.S. Roberts, Mathematical models of skin permeability: an overview. Int. J. Pharm. 418, 115–129 (2011)

    Article  Google Scholar 

  14. T. Higuchi, Rate of release of medications from ointment bases containing drugs in suspension. J. Pharm. Sci. 50, 874–875 (1961)

    Article  Google Scholar 

  15. P. Schlupp, T. Blaschke, K.D. Kramer, H.-D. Höltje, W. Mehnert, M. Schäfer-Korting, Drug release and skin penetration from solid lipid nanoparticles and a base cream: a systematic approach from a comparison of three glucocorticoids. Skin Pharmacol. Physiol. 24, 199–209 (2011)

    Article  Google Scholar 

  16. H.A.E. Benson, Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv. 2, 23–33 (2005)

    Article  Google Scholar 

  17. J. Hadgraft, J.W. Hadgraft, I. Sarkany, The effect of glycerol on the percutaneous absorption of methyl nicotinate. Br. J. Dermatol. 87(1), 30–36 (1972)

    Article  Google Scholar 

  18. N. Carreras, C. Alonso, M. Martí, M. Lis, Mass transport model through the skin by microencapsulation system. J. Microencapsul. 32(4), 358–363 (2015)

    Article  Google Scholar 

  19. A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Design 86(11), 1196–1206 (2008)

    Article  Google Scholar 

  20. L. Bartosova, J. Bajgar, Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 19, 4671–4677 (2012)

    Article  Google Scholar 

  21. H. Rothe, C. Obringer, J. Manwaring, C. Avci, W. Wargniez, J. Eilstein, N. Hewitt, R. Cubberley, H. Duplan, D. Lange, C. Jacques-Jamin, M. Klaric, A. Schepky, S. Grégoire, Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum. J. Appl. Toxicol. 37, 806–816 (2017)

    Article  Google Scholar 

  22. E.A. Genina, A.N. Bashkatov, A.A. Korobko, E.A. Zubkova, V.V. Tuchin, I. Yaroslavsky, G.B. Altshuler, Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)

    Article  ADS  Google Scholar 

  23. R. Pjanović, R. Stojanović, M. Šajber, J. Veljković, N. Bošković-Vragolović, S. Pejanović, Diffusion of lidocaine hydrochloride from lipid microparticles. Chem. Ind. Chem. Eng. Quart. 15(1), 33–35 (2009)

    Article  Google Scholar 

  24. A.Y. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin, Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents- quantitative analysis using confocal Raman microscopy. J. Biophotonics 12, e201800283 (2019)

    Article  Google Scholar 

  25. K. Dennerlein, F. Kiesewetter, S. Kilo, T. Jäger, T. Göen, G. Korinth, H. Drexler, Dermal absorption and skin damage following hydrofluoric acid. Toxicol. Lett. 248, 25–33 (2016)

    Article  Google Scholar 

  26. L. Thors, S. Lindberg, S. Johansson, M. Koch, L. Hägglund, A. Bucht, RSDL decontamination of human skin contaminated with the nerve agent VX. Toxicol. Lett. 269, 47–54 (2017)

    Article  Google Scholar 

  27. L. Thors, M. Koch, E. Wingenstam, B. Koch, L. Hägglund, A. Bucht, Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin. Chem. Biol. Interact. 272, 82–89 (2017)

    Article  Google Scholar 

  28. Y. Cao, X. Hui, H. Zhu, A. Elmahdy, H. Maibach, In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using dermal decontamination gel (DDGEL) and reactive skin decontamination lotion (RSDL). Toxicol. Lett. 291, 86–91 (2018)

    Article  Google Scholar 

  29. S. Gaskin, L. thredgold, L. Heath, D. Pisaniello, M. Logan, C. Baxter, Empirical data in support of a skin notation for methyl chloride. J. Occup. Environ. Hyg. 15(8), 569–572 (2018)

    Article  Google Scholar 

  30. R. van Doorn, P.J.A. Borm, C.M. Leijdekkers, P.T. Henderson, J. Reuvers, T.J. van Bergen, Detection and identification of S-methylcysteine in urine of workers exposed to methyl chloride. Int. Arch. Occup. Environ. Health 46(2), 99–109 (1980)

    Article  Google Scholar 

  31. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Chloromethane (U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1998)

    Google Scholar 

  32. D.R. Mattie, G.D. Bates Jr., G.W. Jepson, J.W. Fisher, J.N. McDougal, Determination of skin:air partition coefficients for volatile chemicals: experimental method and applications. Fundam. Appl. Toxicol. 22, 51–57 (1994)

    Article  Google Scholar 

  33. G. Maina, C. Gastagnoli, G. Ghione, V. Passini, G. Adami, F.L. Filon, M. Grosera, Skin contamination as pathway for nicotine intoxication in vapers. Toxicol. In Vitro 41, 102–105 (2017)

    Article  Google Scholar 

  34. S. Gaskin, L. Heath, D. Pisaniello, R. Evans, J.W. Edwards, M. Logan, C. Baxter, Hydrogen sulphide and phosphine interactions with human skin in vitro: application to hazardous material incident decision making for skin decontamination. Toxicol. Ind. Health 33(4), 289–296 (2017)

    Article  Google Scholar 

  35. T.Y.K. Chan, Aconite poisoning following the percutaneous absorption of Aconitum alkaloids. Forensic Sci. Int. 223, 25–27 (2012)

    Article  Google Scholar 

  36. K.S. Park, J.H. Kwon, S.H. Park, W. Ha, J. Lee, H.C. An, Y. Kim, Acute copper sulfate poisoning resulting from dermal absorption. Am. J. Ind. Med. 61, 783–788 (2018)

    Article  Google Scholar 

  37. S.-K. Han, S.-R. Yeom, S.H. Lee, S.-C. Park, H.-B. Kim, Y.-M. Cho, S.W. Park, A fatal case of chlorfenapyr poisoning following dermal exposure. Hong Kong J. Emerg. Med., 1–4 (2018)

    Google Scholar 

  38. X. Guo, Z. Guo, H. Wei, H. Yang, Y. He, S. Xie, G. Wu, X. Deng, Q. Zhao, L. Li, In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochem. Photobiol. 87(3), 734–740 (2011)

    Article  Google Scholar 

  39. Z. Zhi, Z. Han, Q. Luo, D. Zhu, Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer. J. Innov. Opt. Health Sci. 2(3), 269–278 (2009)

    Article  Google Scholar 

  40. T.Y. Lim, R.L. Poole, N.M. Pageler, Propylene glycol toxicity in children. J. Pediatr. Pharmacol. Ther. 19(4), 277–282 (2014)

    Google Scholar 

  41. V.D. Genin, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of diffusion coefficient of propylene glycol in skin tissue. Proc. SPIE 9448, 94480E (2015)

    ADS  Google Scholar 

  42. A.A. Selifonov, V.V. Tuchin, Kinetics of optical properties on selected laser lines of human periodontal gingiva when exposed to glycerol-propylene glycol mixture, in International Symposium FLAMN-19 (Fundamentals of Laser Assisted Micro- & Nanotechnologies), Symposium Program, Paper PS3-C02-9, St. Petersburg, 30 June–4 July, 2019, p.71. https://flamn.ifmo.ru/docs/Program_Symposium_FLAMN_-_19.pdf

  43. S.D. Sheffer, H.L.R. Cooper, N. Pologruto, Delivery of pharmaceutical active ingredients through the skin and hair follicles into dermis and transdermal delivery, US Patent No. US2016/0361264 A1, 15 Dec 2016

    Google Scholar 

  44. E.A. Genina, Y.I. Svenskaya, I.Y. Yanina, L.E. Dolotov, N.A. Navolokin, A.N. Bashkatov, G.S. Terentyuk, A.B. Bucharskaya, G.N. Maslyakova, D.A. Gorin, V.V. Tuchin, G.B. Sukhorukov, In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers. Biomed. Opt. Express 7(6), 2082–2087 (2016)

    Article  Google Scholar 

  45. I.Y. Yanina, N.A. Navolokin, Y.I. Svenskaya, A.B. Bucharskaya, G.N. Maslyakova, D.A. Gorin, G.B. Sukhorukov, V.V. Tuchin, Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green. J. Biomed. Opt. 22(5), 055008 (2017)

    Article  ADS  Google Scholar 

  46. Y.I. Svenskaya, E.A. Genina, B.V. Parakhonskiy, E.V. Lengert, E.E. Talnikova, G.S. Terentyuk, S.R. Utz, D.A. Gorin, V.V. Tuchin, G.B. Sukhorukov, A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system. ACS Appl. Mater. Interfaces 11(19), 17270–17282 (2019)

    Article  Google Scholar 

  47. S.R. White, Toxic alcohols, in Rosen’s Emergency Medicine: Concepts and Clinical Practice, ed. by J. A. Marx, R. S. Hockberger, R. M. Walls, vol. 2, 7th edn., (Elsevier, Philadelphia, PA, 2010), pp. 2001–2009

    Chapter  Google Scholar 

  48. L.M. Oliveira, M.I. Carvalho, E.N. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)

    Article  ADS  Google Scholar 

  49. S. Seidl, B. Schwarze, P. Betz, Lethal cyanide inhalation with post-mortem trans-cutaneous cyanide diffusion. Leg. Med. 5, 238–241 (2003)

    Article  Google Scholar 

  50. P. Rayar, S. Ratnaplan, Pediatric ingestions of house hold products containing ethanol: a review. Clin. Pediatr. 52(3), 203–209 (2012)

    Article  Google Scholar 

  51. https://articles.mercola.com/sites/articles/archive/2015/09/09/toxic-toothpaste-ingredients.aspx. Accessed 22 Mar 2019

  52. S.S. Konstantinović, B.R. Danilović, J.T. Ćirić, S.B. Ilić, D.S. Savić, V.B. Veljković, Valorization of crude glycerol from biodiesel production. Chem. Ind. Chem. Eng. Q. 22(4), 461–489 (2016)

    Article  Google Scholar 

  53. V.K. Garlapati, U. Shankar, A. Budhiraja, Bioconversion technologies of crude glycerol to value added industrial products. Biotech. Rep. 9, 9–14 (2016)

    Article  Google Scholar 

  54. F. Hernández, M. Ibáñez, J.V. Sancho, Fast determination of toxic diethylene glycol in toothpaste by ultra-performance liquid chromatography – time of flight mass spectrometry. Anal. Bioanal. Chem. 391, 1021–1027 (2008)

    Article  Google Scholar 

  55. S. Barry, J.-C. Wolff, Investigation into the quantitative analysis of diethylene glycol in toothpaste by direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 30, 1829–1834 (2016)

    Article  ADS  Google Scholar 

  56. M. Özgöz, H. Yaǧiz, Y. Çiçek, A. Tezel, Gingival necrosis following the use of a paraformaldehyde-containing paste: a case report. Int. Endod. J. 37, 157–161 (2004)

    Article  Google Scholar 

  57. G.N. Teke, N.G. Enongene, A.R. Tiagha, In vitro antimicrobial activity of some commercial toothpastes. Int. J. Curr. Microb. Appl. Sci. 6(1), 433–446 (2017)

    Article  Google Scholar 

  58. B.V. Vannet, B. De Wever, E. Adriaens, F. Ramaeckers, P. Bottenberg, The evaluation of sodium lauryl sulphate in toothpaste on toxicity on human gingiva and mucosa: a 3D in vitro model. Dentistry 5(9), 325-1–325-5 (2015)

    Google Scholar 

  59. B. Cvikl, A. Lussi, R. Gruber, The in vitro impact of toothpaste extracts on cell viability. Eur. J. Oral Sci. 123, 179–185 (2015)

    Article  Google Scholar 

  60. M. Ersoy, J. Tanalp, E. Ozel, R. Cengizlier, M. Soyman, The allergy of toothpaste: a case report. Allergol. Immunopathol. 36(6), 368–370 (2008)

    Article  Google Scholar 

  61. T.H. Figueiredo, J.P. Apland, M.F.M. Braga, A.M. Marini, Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia 59(S2), 92–99 (2018)

    Article  Google Scholar 

  62. L. Schenk, K. Feychting, A. Annas, M. Öberg, Records from the Swedish poisons centre as a means for surveillance of occupational accidents and incidents with chemicals. Safety Sci. 104, 269–275 (2018)

    Article  Google Scholar 

  63. P.D. Creswell, J.G. Meiman, H. Nehls-Lowe, C. Vogt, R.J. Wozniak, M.A. Werner, H. Anderson, Exposure to elevated carbon monoxide levels at an indoor ice arena – Wisconsin, 2014. Morb. Mortal. Wkly. Rep. 64(45), 1267–1270 (2015)

    Article  Google Scholar 

  64. T. Kojima, M. Dogru, A. Higuchi, T. Nagata, O.M.A. Ibrahim, T. Inaba, K. Tsubota, Protection from acute tobacco smoke exposure evidence from Nrf2 knockout mice. Am. J. Pathol. 185(3), 776–785 (2015)

    Article  Google Scholar 

  65. N.J. Kleiman, A.M. Quinn, K.G. Fields, V. Slavkovich, J.H. Graziano, Arsenite accumulation in the mouse eye. J. Toxicol. Environ. Health A 79(8), 339–341 (2016)

    Article  Google Scholar 

  66. C. Ratti, Hot air and freeze-drying of high-value foods: a review. J. Food Eng. 49, 311–319 (2001)

    Article  Google Scholar 

  67. M.R. Khan, Osmotic dehydration technique for fruits preservation – a review. Pak. J. Food Sci. 22(2), 71–85 (2012)

    ADS  Google Scholar 

  68. R.S.F. Filho, R.P. Gusmão, W.P. Silva, J.P. Gomes, E.V.C. Filho, A.A. El-Aouar, Osmotic dehydration of pineapple stems in hypertonic sucrose solutions. Agric. Sci. 6, 916–924 (2015)

    Google Scholar 

  69. A. Ciurzyńska, H. Kowalska, K. Czajkowska, A. Lenart, Osmotic dehydration in production of sustainable and healthy food. Tends Food Sci. Tech. 50, 186–192 (2016)

    Article  Google Scholar 

  70. I. Ahmed, I.M. Qazi, S. Jamal, Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 34, 29–43 (2016)

    Article  Google Scholar 

  71. M.S. Rahman, Osmotic dehydration of foods. Chapter 19, in Handbook of Food Preservation, ed. by M. S. Rahman, 2nd edn., (Taylor & Francis Group LLC, CRC Press, Boca Raton, FL, 2007), pp. 433–446

    Chapter  Google Scholar 

  72. G. Bidaisee, N. Badrie, Osmotic dehydration of cashew apples (Anacardium occidentale L.): quality evaluation of candied cashew apples. Int. J. Food Sci. Technol. 36, 71–78 (2001)

    Article  Google Scholar 

  73. M.H. Kim, R.T. Toledo, Effect of osmotic dehydration and high temperature fluidized bed drying on properties of dehydrated rabbit eye blueberries. J. Food Sci. 52(4), 980–989 (1987)

    Article  Google Scholar 

  74. D. Torreggiani, Technical aspects of osmotic dehydration in foods, in Food Preservation by Moisture Control. Fundamentals and Applications, ed. by G. V. Barbosa-Canovas, J. Welti-Chanes, (Technomic Publishing, Lancaster, PA, 1995), pp. 281–304

    Google Scholar 

  75. F.K. Ertekin, T. Cakaloz, Osmotic dehydration of peas II. Influence of osmosis on drying behavior and product quality. J. Food Process. Preserv. 20, 105–119 (1996)

    Article  Google Scholar 

  76. U. Erle, H. Schubert, Combined osmotic and microwave-vacuum dehydration of apples and strawberries. J. Food Eng. 49, 193–199 (2001)

    Article  Google Scholar 

  77. A. Chiralt, P. Fito, J.M. Barat, A. Andrés, C. González-Martínez, I. Escriche, M.M. Camacho, Use of vacuum impregnation in food salting process. J. Food Eng. 49, 141–151 (2001)

    Article  Google Scholar 

  78. S.M. Monnerat, T.R.M. Pizzi, M.A. Mauro, F.C. Menegalli, Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J. Food Eng. 100, 604–612 (2010)

    Article  Google Scholar 

  79. H.G. Ramya, S. Kumar, S. Kapoor, Optimization of osmotic dehydration process for oyster mushrooms (Pleurotus sajor-caju) in sodium chloride solution using RSM. J. Appl. Nat. Sci. 6(1), 152–158 (2014)

    Article  Google Scholar 

  80. C.C. Ferrari, M.D. Hubinger, Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. Int. J. Food Sci. Technol. 43, 2065–2074 (2008)

    Article  Google Scholar 

  81. P.M. Azoubel, F.E.X. Murr, Mass transfer kinetics of osmotic dehydration of cherry tomato. J. Food Eng. 61, 291–295 (2004)

    Article  Google Scholar 

  82. A.K. Yadav, S.V. Singh, Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 51(9), 1654–1673 (2014)

    Article  Google Scholar 

  83. I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12, e201800333 (2019). https://doi.org/10.1002/jbio.201800333

    Article  Google Scholar 

  84. S.K. Jain, R.C. Verna, L.K. Murdia, H.K. Jain, Optimization of process parameters for osmotic dehydration of papaya cubes. J. Food Sci. Technol. 48(2), 211–217 (2011)

    Article  Google Scholar 

  85. D. Tiroutchevalme, V. Sivakumar, J.P. Maran, Mass transfer kinetics during osmotic dehydration of AMLA (Emblica officinalis L.) cubes in sugar solution. Chem. Ind. Chem. Eng. Q. 21(4), 547–559 (2015)

    Article  Google Scholar 

  86. N.K. Rastigi, K.S.M.S. Raghavarao, Function of temperature and concentration during osmotic dehydration. J. Food Eng. 34, 429–440 (1997)

    Article  Google Scholar 

  87. I. Filipović, B. Ćurčić, V. Filipović, M. Nićetin, J. Filipović, V. Knežević, The effects of technological parameters on chicken meat osmotic dehydration process efficiency. J. Food Process. Preserv. 41, e13116-1–e13116-7 (2016)

    Google Scholar 

  88. N.L. Flores-Martínez, M.C.I. Pérez-Pérez, J.M. Oliveros-Muñoz, M.L. López-González, H. Jiménez-Islas, Estimation of diffusion coefficients of essential oil of Pimenta dioica in edible films formulated with aloe vera and gelatin, using Levenberg-Marquardt method. Rev. Mexicana de Ingeniería Química 17(2), 485–506 (2018)

    Article  Google Scholar 

  89. M. Hadipernata, M. Ogawa, Mass transfer and diffusion coefficient of D-Allulose during osmotic dehydration. J. Appl. Food Technol. 3(2), 6–10 (2016)

    Google Scholar 

  90. D. Dimakopoulou-Papazoglou, E. Katsanidis, Mass transfer kinetics during osmotic processing of beef meat using ternary solutions. Food Bioprod. Process. 100, 560–569 (2016)

    Article  Google Scholar 

  91. Sangeeta, B.S. Hathan, Studies on mass transfer and diffusion coefficients in elephant foot yam (Amorphophallus SPP.) during osmotic dehydration in sodium chloride solution. J. Food Process Preserv. 40, 521–530 (2016)

    Article  Google Scholar 

  92. J.H. King, W.M. Townsend, The prolonged storage of donor corneas by glycerine dehydration. Trans. Am. Ophthalmol. Soc. 82, 106–110 (1984)

    Google Scholar 

  93. N. Gupta, P. Upadhyay, Use of glycerol-preserved corneas for corneal transplants. Ind. J. Ophthalmol. 65, 569–573 (2017)

    Article  Google Scholar 

  94. http://www.globalsightnetwork.org/surgeons/glycerolplus-cornea-products. Accessed 22 Apr 2019

  95. M.R. Herson, K. Hamilton, J. White, D. Alexander, S. Poniatowski, A.J. O’Connor, J.A. Werkmeiter, Interaction of preservation methods and radiation sterilization in human skin processing, with particular insight on the impact of the final water content and collagen disruption. Part I: process validation, water activity and collagen changes in tissues cryopreserved or processed using 50, 85 or 98% glycerol solutions. Cell Tissue Bank. 19, 215–217 (2018)

    Article  Google Scholar 

  96. F.A. Elnady, The Elnady technique: an innovative new method for tissue preservation. ALTEX 33(3), 237–242 (2016)

    Google Scholar 

  97. B. Wowk, How cryoprotectants work. Cryonics 28(3), 3–7 (2007). ed. by J. Chapman, Alcor Life Extension Foundation, Scottsdale, AZ

    Google Scholar 

  98. M.S.I. Siddiqui, M. Giasuddin, S.M.Z.H. Chowdhury, M.R. Islam, E.H. Chowdhury, Comparative effectiveness of dimethyl sulphoxide (DMSO) and glycerol as cryoprotective agent in preserving Vero cells. Bangl. Veterin. 32(2), 35–41 (2015)

    Article  Google Scholar 

  99. R. Chen, B. Wang, Y. Liu, R. Lin, J. He, D. Li, A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing. Cryobiology 82, 1–7 (2018)

    Article  Google Scholar 

  100. G.M. Fahy, D.R. MacFarlane, C.A. Angell, H.T. Meryman, Vitrification as an approach to cryopreservation. Cryobiology 21(4), 407–426 (1984)

    Article  Google Scholar 

  101. G.D. Elliot, S. Wang, B.J. Fuller, Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017)

    Article  Google Scholar 

  102. P. Kilbride, G.J. Morris, Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems. Cryobiology 76, 92–97 (2017)

    Article  Google Scholar 

  103. X. Zhou, X.M. Liang, J. Wang, P. Du, D. Gao, Theoretical and experimental study of a membrane-based microfluidics for loading and unloading cryoprotective agents. Int. J. Heat Mass Transfer 127, 637–644 (2018)

    Article  Google Scholar 

  104. T.A. Takroni, H. Yu, L. Laouar, A.B. Adesida, J.A.W. Elliott, N.M. Jomha, Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue. Cryobiology 74, 50–60 (2017)

    Article  Google Scholar 

  105. A. Abazari, J.A.W. Elliott, L.E. McGann, R.B. Thompson, MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions. Osteoart. Cartil. 20, 1004–1010 (2012)

    Article  Google Scholar 

  106. J.D. Benson, A.Z. Higgins, K. Desai, A. Eroglu, A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80, 144–155 (2018)

    Article  Google Scholar 

  107. J.G. Alvarez, B.T. Storey, Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: glycerol and other polyols as sole cryoprotectant. J. Androl. 14(3), 199–209 (1993)

    Google Scholar 

  108. G.D.A. Gastal, B.G. Alves, K.A. Alves, S.O. Paiva, S.G.S. de Tarso, G.M. Ishak, S.T. Bashir, E.L. Gastal, Effects of cryoprotectant agents on equine ovarian biopsy fragments in preparation for cryopreservation. J. Equine Vet. Sci. 53, 86–93 (2017)

    Article  Google Scholar 

  109. D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin, Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics 8(4), 332–346 (2015)

    Article  Google Scholar 

  110. G. Spieles, T. Marx, I. Heschel, G. Rau, Analysis of desorption and diffusion during secondary drying in vacuum freeze-drying of hydroxyethyl starch. Chem. Eng. Process. 34, 351–357 (1995)

    Article  Google Scholar 

  111. L. Weng, S.L. Stott, M. Toner, Exploring dynamics and structure of biomolecules, cryoprotectants, and water using molecular dynamics simulations: implications for biostabilization and biopreservation. Ann. Rev. Biomed. Eng. 21, 1–31 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L.M.C., Tuchin, V.V. (2019). Other Applications of Optical Clearing Agents. In: The Optical Clearing Method. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-33055-2_8

Download citation

Publish with us

Policies and ethics