Skip to main content

Structure Preserving Preconditioning for Frame-Based Image Deblurring

  • Chapter
  • First Online:
Computational Methods for Inverse Problems in Imaging

Part of the book series: Springer INdAM Series ((SINDAMS,volume 36))

Abstract

Regularizing preconditioners for accelerating the convergence of iterative regularization methods and improving their accuracy have been extensively investigated both in Hilbert and Banach spaces. For deconvolution problems, the classical approach defines preconditioners based on the circular convolution. On the other hand, for \(\ell _2\) regularization methods, it has been recently shown that a preconditioner preserving the structure of the convolution operator can be more effective. Such a preconditioner can improve both restoration quality and robustness of the method with respect to the choice of the regularization parameter when compared with the non-structured ones. In this paper we explore the use of structure preserving preconditioning for \(\ell _1\)-norm regularization in the wavelet domain in image deblurring. A recently proposed preconditioned variant of the linearized Bregman iteration is modified to preserve the structure of the coefficient matrix according to the imposed boundary conditions. The structured preconditioner is chosen as an approximation of a regularized inverse of the convolution matrix. Selected numerical experiments show that our preconditioning strategy improves the previous results obtained with circulant preconditioning providing restorations with lower ringing effects and sharper details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aricò, A., Donatelli, M., Serra-Capizzano, S.: Spectral analysis of the anti-reflective algebra. Linear Algebra Appl. 428, 657–675 (2008)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brianzi, P., Di Benedetto, F., Estatico, C.: Improvement of space-invariant image deblurring by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)

    Article  MathSciNet  Google Scholar 

  4. Buccini, A.: Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term. Appl. Num. Math. 116, 64–81 (2017)

    Article  MathSciNet  Google Scholar 

  5. Buccini, A., Park, Y., Reichel, L.: Numerical aspects of the nonstationary modified linearized Bregman algorithm. Appl. Math. Comput. 337(15), 386–398 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Buccini, A., Reichel, L.: An  \(\ell _2\)-\(\ell _{q}\) regularization method for large discrete ill-posed problems. J. Sci. Comput., in Press

    Google Scholar 

  7. Cai, J.-F., Chan, R., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24, 1408–1432 (2003)

    Article  MathSciNet  Google Scholar 

  8. Cai, Y., Donatelli, M., Bianchi, D., Huang, T.Z.: Regularization preconditioners for frame-based image deblurring with reduced boundary artifacts. SIAM J. Sci. Comput. 38, B164–B189 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2–1, 226–252 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17, 91–115 (2004)

    Article  MathSciNet  Google Scholar 

  11. Chan, R.H., Ng, M.K.: Conjugate gradient method for toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  Google Scholar 

  12. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57–11, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  13. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MathSciNet  Google Scholar 

  14. Dell’Acqua, P.: A note on Taylor boundary conditions for accurate image restoration. Adv. Comput. Math. 43, 1283–1304 (2017)

    Article  MathSciNet  Google Scholar 

  15. Dell’Acqua, P., Donatelli, M., Estatico, C., Mazza, M.: Structure preserving preconditioners for image deblurring. J. Sci. Comput. 72(1), 147–171 (2017)

    Article  MathSciNet  Google Scholar 

  16. Dell’Acqua, P., Donatelli, M., Estatico, C.: Preconditioners for image restoration by reblurring techniques. J. Comput. Appl. Math. 272, 313–333 (2014)

    Article  MathSciNet  Google Scholar 

  17. Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems. BIT 50–3, 559–576 (2010)

    Article  MathSciNet  Google Scholar 

  18. Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Probl. 22, 2035–2053 (2006)

    Article  MathSciNet  Google Scholar 

  19. Donatelli, M., Hanke, M.: Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring. Inverse Probl. 29, 095008 (2013)

    Article  MathSciNet  Google Scholar 

  20. Donatelli, M., Martin, D., Reichel, L.: Arnoldi methods for image deblurring with anti-reflective boundary conditions. Appl. Math. Comput. 253, 135–150 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Donatelli, M., Serra-Capizzano, S.: Antireflective boundary conditions for deblurring problems. J. Electr. Comput. Eng. 2010, Article ID 241467, 18 (survey) (2010)

    Google Scholar 

  22. Engl, H.W., Hanke, M., Neubauer, A.: Regularization Methods for Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  23. Egger, H., Neubauer, A.: Preconditioning Landweber iteration in Hilbert scales. Numer. Math. 101, 643–662 (2005)

    Article  MathSciNet  Google Scholar 

  24. Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12–8, 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  25. Fan, Y.W., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra Appl. 434, 2244–2268 (2011)

    Article  MathSciNet  Google Scholar 

  26. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Indust. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Hanke, M., Nagy, J.: Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques. Inverse Probl. 12, 157–173 (1996)

    Article  MathSciNet  Google Scholar 

  28. Hanke, M., Nagy, J., Plemmons, R.: Preconditioned iterative regularization for ill-posed problems. In: Numerical Linear Algebra. Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, Kent, Ohio, March 13–14 1992, de Gruyter, pp. 141–163 (1993)

    Google Scholar 

  29. Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images Matrices, Spectra and Filtering. SIAM Publications, Philadelphia (2005)

    MATH  Google Scholar 

  30. Kilmer, M.E.: Cauchy-like preconditioners for two-dimensional ill-posed problems. SIAM J. Matrix Anal. Appl. 20, 777–799 (1999)

    Article  MathSciNet  Google Scholar 

  31. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a MATLAB object oriented approach. Numer. Algorithms 36 73–93 (2004). See also: http://www.mathcs.emory.edu/~nagy/RestoreTools

  32. Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13–2, 441–464 (1997)

    Article  MathSciNet  Google Scholar 

  33. Serra-Capizzano, S.: A note on anti-reflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25(4) 1307–1325 (2003)

    Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  35. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for   \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors are members of the INdAM Research group GNCS, which has partially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchi, D., Buccini, A., Donatelli, M. (2019). Structure Preserving Preconditioning for Frame-Based Image Deblurring. In: Donatelli, M., Serra-Capizzano, S. (eds) Computational Methods for Inverse Problems in Imaging. Springer INdAM Series, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-32882-5_2

Download citation

Publish with us

Policies and ethics