Skip to main content

Longitudinal Analysis of Fetal MRI in Patients with Prenatal Spina Bifida Repair

  • Conference paper
  • First Online:
Book cover Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2019, SUSI 2019)

Abstract

Open spina bifida (SB) is one of the most common congenital defects and can lead to impaired brain development. Emerging fetal surgery methods have shown considerable success in the treatment of patients with this severe anomaly. Afterwards, alterations in the brain development of these fetuses have been observed. Currently no longitudinal studies exist to show the effect of fetal surgery on brain development. In this work, we present a fetal MRI neuroimaging analysis pipeline for fetuses with SB, including automated fetal ventricle segmentation and deformation-based morphometry, and demonstrate its applicability with an analysis of ventricle enlargement in fetuses with SB. Using a robust super-resolution algorithm, we reconstructed fetal brains at both pre-operative and post-operative time points and trained a U-Net CNN in order to automatically segment the ventricles. We investigated the change of ventricle shape post-operatively, and the impacts of lesion size, type, and GA at operation on the change in ventricle shape. No impact was found. Prenatal ventricle volume growth was also investigated. Our method allows for the quantification of longitudinal morphological changes to fully quantify the impact of prenatal SB repair and could be applied to predict postnatal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roach, J.W., Short, B.F., Saltzman, H.M.: Adult consequences of spina bifida: a cohort study. Clin. Orthop. 469(5), 1246–1252 (2011)

    Article  Google Scholar 

  2. Meuli, M., Moehrlen, U.: Fetal surgery for myelomeningocele is effective: a critical look at the whys. Pediatr. Surg. Int. 30(7), 689–697 (2014)

    Article  Google Scholar 

  3. Möhrlen, U., et al.: Benchmarking against the MOMS trial: Zurich results of open fetal surgery for spina bifida. Fetal Diagn. Ther. 5, 1–7 (2019)

    Article  Google Scholar 

  4. Adzick, N.S.: Fetal surgery for myelomeningocele: trials and tribulations. Isabella Forshall Lecture. J. Pediatr. Surg. 47(2), 273–281 (2012)

    Article  Google Scholar 

  5. Aertsen, M., et al.: Reliability of MR imaging-based posterior fossa and brain stem measurements in open spinal dysraphism in the era of fetal surgery. Am. J. Neuroradiol. 40(1), 191–198 (2019)

    Article  Google Scholar 

  6. Kim, K., Habas, P.A., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans. Med. Imaging 29(1), 146–158 (2010)

    Article  Google Scholar 

  7. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  8. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  9. Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.-P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015)

    Article  Google Scholar 

  10. Ebner, M., et al.: An automated localization, segmentation and reconstruction framework for fetal brain MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 313–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_36

    Chapter  Google Scholar 

  11. Tourbier, S., et al.: Automated template-based brain localization and extraction for fetal brain MRI reconstruction. NeuroImage 155, 460–472 (2017)

    Article  Google Scholar 

  12. Wright, R., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91, 21–32 (2014)

    Article  Google Scholar 

  13. Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101, 633–643 (2014)

    Article  Google Scholar 

  14. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724 (2018)

    Google Scholar 

  15. Habas, P.A., Kim, K., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum. Brain Mapp. 31(9), 1348–1358 (2010)

    Article  Google Scholar 

  16. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  17. Gholipour, A., Akhondi-Asl, A., Estroff, J.A., Warfield, S.K.: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60(3), 1819–1831 (2012)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  20. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  21. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457–2466 (2010)

    Article  Google Scholar 

  22. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  23. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  24. Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E.: Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014)

    Article  Google Scholar 

  25. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7, 476 (2017)

    Article  Google Scholar 

  26. Meuli, M., Meuli-Simmen, C., Hutchins, G.M., Yingling, C.D., Hoffman, K.M., Harrison, M.R., Adzick, N.S.: In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat. Med. 1, 342–347 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the OPO Foundation, Anna Müller Grocholski Foundation, the Foundation for Research in Science and the Humanities at the University of Zurich, EMDO Foundation, Hasler Foundation, and the Forschungszentrum für das Kind Grant (FZK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Payette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Payette, K. et al. (2019). Longitudinal Analysis of Fetal MRI in Patients with Prenatal Spina Bifida Repair. In: Wang, Q., et al. Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis. PIPPI SUSI 2019 2019. Lecture Notes in Computer Science(), vol 11798. Springer, Cham. https://doi.org/10.1007/978-3-030-32875-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32875-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32874-0

  • Online ISBN: 978-3-030-32875-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics