Skip to main content

Functional Observer-Based Sliding Mode Control for Discrete-Time Delayed Stochastic Systems

  • Chapter
  • First Online:
  • 361 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 483))

Abstract

This chapter addresses the problem of stabilisation, observer-based  sliding mode control, and functional observer-based  sliding mode control. An SMC method is proposed for discrete-time delayed stochastic systems. Stability and convergence analyses of the proposed method are provided. Furthermore, the DSMC of a delayed stochastic system for incomplete state information has also been considered, where states are estimated by the Kalman filter approach. A functional observer-based  SMC method for discrete-time delayed stochastic systems is proposed. Therefore, the SMC has been estimated by the functional observer approach. Finally, functional observer-based state feedback and the SMC law are compared graphically as well as numerically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kharitonov, V.: Time-Delay Systems: Lyapunov Functionals and Matrices. Control Engineering. Birkhäuser, Boston (2012)

    MATH  Google Scholar 

  2. Cheres, E., Gutman, S., Palmor, Z.J.: IEEE Trans. Autom. Control 34(11), 1199 (1989). https://doi.org/10.1109/9.40753

    Article  Google Scholar 

  3. Choi, H.H.: Electron. Lett. 30(13), 1100 (1994). https://doi.org/10.1049/el:19940732

    Article  Google Scholar 

  4. Liao, X., Wang, L., Yu, P.: Stability of Dynamical Systems. Monograph Series on Nonlinear Science and Complexity. Elsevier Science, New York (2007)

    Book  Google Scholar 

  5. Xu, S., Lam, J., Yang, C.: Syst. Control Lett. 43(2), 77 (2001)

    Article  Google Scholar 

  6. Gouaisbaut, F., Dambrine, M., Richard, J.: Syst. Control Lett. 46(4), 219 (2002)

    Article  Google Scholar 

  7. Shi, P., Boukas, E.K., Shi, Y., Agarwal, R.K.: J. Comput. Appl. Math. 157(2), 435 (2003)

    Article  MathSciNet  Google Scholar 

  8. Song, H., Chen, S.C., Yam, Y.: IEEE Trans. Cybern. PP(99), 1 (2017). https://doi.org/10.1109/TCYB.2016.2577340

    Article  Google Scholar 

  9. Hu, J., Wang, Z., Niu, Y., Gao, H.: J. Frankl. Inst. 351(4), 2185 (2014). Special Issue on 2010-2012 Advances in Variable Structure Systems and Sliding Mode Algorithms

    Google Scholar 

  10. Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: J. Frankl. Inst. 349(4), 1459 (2012). Special Issue on Optimal Sliding Mode Algorithms for Dynamic Systems

    Google Scholar 

  11. Singh, S., Janardhanan, S.: In: 2015 International Workshop on Recent Advances in Sliding Modes (RASM), pp. 1–6 (2015)

    Google Scholar 

  12. Mehta, A.J., Bandyopadhyay, B.: ASME, J. Dyn. Syst. Meas. Contro 138, 124503 (2016)

    Google Scholar 

  13. Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: IEEE Trans. Ind. Electron. 59(7), 3008 (2012). https://doi.org/10.1109/TIE.2011.2168791

    Article  Google Scholar 

  14. Kalman, R.E., Bucy, R.S.: Trans. ASME. Ser. D. J. Basic Eng. 109 (1961)

    Google Scholar 

  15. Rhodes, I.: IEEE Trans. Autom. Control 16(6), 688 (1971)

    Article  Google Scholar 

  16. Rao, B., Mahalanabis, A.: IEEE Trans. Autom. Control 16(3), 267 (1971)

    Article  Google Scholar 

  17. Liang, D., Christensen, G.: IEEE Trans. Autom. Control 20(1), 176 (1975). https://doi.org/10.1109/TAC.1975.1100879

    Article  Google Scholar 

  18. Chen, B., Yu, L., Zhang, W.A.: IET Control Theory Appl. 5(17), 1945 (2011)

    Article  MathSciNet  Google Scholar 

  19. Trinh, H.: Int. J. Control 72(18), 1642 (1999)

    Article  Google Scholar 

  20. Darouach, M.: IEEE Trans. Autom. Control 46(3), 491 (2001)

    Article  MathSciNet  Google Scholar 

  21. Darouach, M.: IEEE Trans. Autom. Control 50(2), 228 (2005)

    Article  Google Scholar 

  22. Singh, S., Janardhanan, S.: Int. J. Syst. Sci. 48(15), 3246 (2017)

    Article  Google Scholar 

  23. Trinh, H., Huong, D.C., Hien, L.V., Nahavandi, S.: IEEE Trans. Circuits Syst. II: Express Briefs 64(5), 555 (2017)

    Article  Google Scholar 

  24. Nguyen, M.C., Trinh, H., Nam, P.T.: Int. J. Syst. Sci. 47(13), 3193 (2016)

    Article  Google Scholar 

  25. Islam, S.I., Lim, C.C., Shi, P.: J. Frankl. Inst. (2018)

    Google Scholar 

  26. Trinh, H., Huong, D.: J. Frankl. Inst. 355(3), 1411 (2018)

    Article  Google Scholar 

  27. Bandyopadhyay, B., Janardhanan, S.: Discrete-time Sliding Mode Control: A Multirate Output Feedback Approach. Lecture Notes in Control and Information Sciences. Springer, Berlin (2005)

    MATH  Google Scholar 

  28. Koshkouei, A.J., Zinober, A.S.I.: ASME 122(4), 793 (2000). https://doi.org/10.1115/1.1321266

    Article  Google Scholar 

  29. Xia, Y., Jia, Y.: IEEE Trans. Autom. Control 48(6), 1086 (2003)

    Article  Google Scholar 

  30. Xia, Y., Fu, M., Shi, P., Wang, M.: IET Control Theory Appl. 4(4), 613 (2010)

    Article  MathSciNet  Google Scholar 

  31. Xia, Y., Liu, G.P., Shi, P., Chen, J., Rees, D.: Int. J. Robust Nonlinear Control 18(11), 1142 (2008)

    Article  Google Scholar 

  32. Scherer, C., Weiland, S.: The Control Systems Handbook. Linear Matrix Inequalities in Control, 2nd edn. (2010)

    Google Scholar 

  33. Gahinet, P.: LMI Control Toolbox: For Use with MATLAB ; User’s Guide ; Version 1. Computation, visualization, programming (MathWorks) (1995)

    Google Scholar 

  34. Brewer, J.: IEEE Trans. Circuits Syst. 25(9), 772 (1978)

    Article  Google Scholar 

  35. Sage, A., Melsa, J.: Estimation Theory with Applications to Communications and Control. McGraw-Hill Series in Systems Science. McGraw-Hill, New York (1971)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satnesh Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Janardhanan, S. (2020). Functional Observer-Based Sliding Mode Control for Discrete-Time Delayed Stochastic Systems. In: Discrete-Time Stochastic Sliding Mode Control Using Functional Observation. Lecture Notes in Control and Information Sciences, vol 483. Springer, Cham. https://doi.org/10.1007/978-3-030-32800-9_6

Download citation

Publish with us

Policies and ethics