Skip to main content

Simulation-Based Analysis of Equalization Algorithms on Active Balancing Battery Topologies for Electric Vehicles

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1069))

Included in the following conference series:

Abstract

Determination of the cell electro-chemistry, topology, and application requirements are crucial to developing a battery management system for charge equalization in a series-connected stack of Lithium-ion (Li-ion) cells. The existing literature on topology categorization does not provide battery and battery model selection methodology for battery management system (BMS) development. To bridge this gap in the literature, this paper provides a unique simulation based analysis on the major steps required to build a BMS that include analysis of a variety of existing Lithium-ion cell electro-chemistries, equivalent models, equalization topologies and circuits. Equalization circuits and their variants are categorized based on components, topology, balancing time and configurations. Cell balancing simulations are then performed on a centralized and a distributed topology using an appropriate equivalent model identified by the analysis. In addition, the simulation also uses a unique cell equalization algorithm proposed in this paper. The results validate voltage and state of charge (SOC) equalization performance in terms of balancing time and energy efficiency. These factors play a crucial role in maintaining battery life and preventing thermal runaways in electric vehicles (EV) or energy storage systems (ESS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battery cell charging system having voltage threshold and bleeder current generating circuits, March 2002

    Google Scholar 

  2. Tesla model s 18650 cell test data, March 2015. https://teslamotorsclub.com/tmc/threads/teslamodel-s-18650-cell-test-data.45063/

  3. Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P., Tassoni, C.: Battery choice and management for new-generation electric vehicles. IEEE Trans. Industr. Electron. 52(5), 1343–1349 (2005)

    Article  Google Scholar 

  4. Andre, D., Meiler, M., Steiner, K., Walz, H., Soczka-Guth, T., Sauer, D.U.: Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. ii: Modelling. J. Power Sources 196(12), 5349–5356 (2011). Selected papers presented at the 12th Ulm Electro Chemical Talks (UECT): 2015 Technologies on Batteries and Fuel Cells

    Google Scholar 

  5. Brand, M., Gläser, S., Geder, J., Menacher, S., Obpacher, S., Jossen, A., Quinger, D.: Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1–9, November 2013

    Google Scholar 

  6. Brando, G., Dannier, A., Spina, I., Piegari, L.: Comparison of accuracy of different LiFePO4 battery circuital models. In: 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1092–1097, June 2014

    Google Scholar 

  7. Bui, T.M., Kim, C.-H., Kim, K.-H., Rhee, S.B.: A modular cell balancer based on multi-winding transformer and switched-capacitor circuits for a series-connected battery string in electric vehicles. Appl. Sci. 8(8), 1278 (2018)

    Article  Google Scholar 

  8. Cacciato, M., Nobile, G., Scarcella, G., Scelba, G.: Real-time model-based estimation of SOC and SOH for energy storage systems. IEEE Trans. Power Electron. 32(1), 794–803 (2017)

    Article  Google Scholar 

  9. Caspar, M., Eiler, T., Hohmann, S.: Systematic comparison of active balancing: a model-based quantitative analysis. IEEE Trans. Veh. Technol. 67(2), 920–934 (2018)

    Article  Google Scholar 

  10. Chen, X., Shen, W., Vo, T.T., Cao, Z., Kapoor, A.: An overview of lithium-ion batteries for electric vehicles. In: 2012 10th International Power Energy Conference (IPEC), pp. 230–235, December 2012

    Google Scholar 

  11. Chiang, Y.-H., Sean, W.-Y., Ke, J.-C.: Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. J. Power Sources 196(8), 3921–3932 (2011)

    Article  Google Scholar 

  12. Daowd, M., Antoine, M., Omar, N., Lataire, P., Van Den Bossche, P., Van Mierlo, J.: Battery management system—balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery. Energies 7(5), 2897–2937 (2014)

    Article  Google Scholar 

  13. Daowd, M., Antoine, M., Omar, N., van den Bossche, P., van Mierlo, J.: Single switched capacitor battery balancing system enhancements. Energies 6(4), 2149–2174 (2013)

    Article  Google Scholar 

  14. Daowd, M.A.A.H., Omar, N., Verbrugge, B., Van Den Bossche, P., Van Mierlo, J.: Battery Models Parameter Estimation based on Matlab/Simulink, November 2010

    Google Scholar 

  15. Du, J., Wang, Y., Tripathi, A., Lam, J.S.L.: Li-ion battery cell equalization by modules with chain structure switched capacitors. In: 2016 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), pp. 1–6, October 2016

    Google Scholar 

  16. Dubarry, M., Vuillaume, N., Liaw, B.Y.: From single cell model to battery pack simulation for Li-ion batteries. J. Power Sources 186(2), 500–507 (2009)

    Article  Google Scholar 

  17. Falconi, A.: Electrochemical Li-ion battery modeling for electric vehicles. Theses, Communaute Universite Grenoble ALPES, October 2017

    Google Scholar 

  18. Mousavi G., S.M., Nikdel, M.: Various battery models for various simulation studies and applications. Renew. Sustain. Energy Rev. 32, 477–485 (2014)

    Google Scholar 

  19. Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M.I., Guerrero-Martinez, M.A.: Battery equalization active methods. J. Power Sources 246, 934–949 (2014)

    Article  Google Scholar 

  20. Gonzalez-Longatt, F.: Circuit based battery models: a review. In: Congreso Iberoamericano de estudiantes De Ingenieria Electrica, pp. 1–5 (2007)

    Google Scholar 

  21. Guo, Y., Lu, R., Wu, G., Zhu, C.: A high efficiency isolated bidirectional equalizer for lithium-ion battery string. In: 2012 IEEE Vehicle Power and Propulsion Conference, pp. 962–966, October 2012

    Google Scholar 

  22. Hannan, M.A., Hoque, M.M., Ker, P.J., Begum, R.A., Mohamed, A.: Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: modeling and applications. Energies 10(9), 1390 (2017)

    Article  Google Scholar 

  23. He, H., Xiong, R., Fan, J.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4(4), 582–598 (2011)

    Article  Google Scholar 

  24. Xiaosong, H., Li, S., Peng, H.: A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 198, 359–367 (2012)

    Article  Google Scholar 

  25. Hussein, A.A.: Experimental modeling and analysis of lithium-ion battery temperature dependence. In: 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1084–1088, March 2015

    Google Scholar 

  26. Hussein, A.A., Batarseh, I.: An overview of generic battery models. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–6, July 2011

    Google Scholar 

  27. Hymel, S.: Measuring internal resistance of batteries, May 2013

    Google Scholar 

  28. Imtiaz, A.M., Khan, F.H.: “Time shared flyback converter” based regenerative cell balancing technique for series connected Li-ion battery strings. IEEE Trans. Power Electron. 28(12), 5960–5975 (2013)

    Article  Google Scholar 

  29. Texas Instruments. EMB1499Q bidirectional current DC-DC controller, September 2013

    Google Scholar 

  30. Islam, M., Omole, A., Islam, A., Domijan, A.: Dynamic capacity estimation for a typical grid-tied event programmable LI-FEPO4 battery. In: 2010 IEEE International Energy Conference, pp. 594–599, December 2010

    Google Scholar 

  31. Jeon, Y., Noh, H.K., Song, H.-K.: A lithium-ion battery using partially lithiated graphite anode and amphi-redox LiMn2O4 cathode. Sci. Rep. 7(1), 14879 (2017)

    Article  Google Scholar 

  32. Kam, K.C., Doeff, M.M.: Electrode materials for lithium ion batteries. Mater. Matters 7, 56–60 (2012)

    Google Scholar 

  33. Karthigeyan, V., Aswin, M., Priyanka, L., Sailesh, K.N.D., Palanisamy, K.: A comparative study of lithium ion (LFP) to lead acid (VRLA) battery for use in telecom power system. In: 2017 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 742–748, March 2017

    Google Scholar 

  34. Khalid, A., Sundararajan, A., Acharya, I., Sarwat, A.I.: Prediction of Li-ion battery state of charge using multilayer perceptron and long short-term memory models. In: 2019 IEEE Transportation Electrification Conference (ITEC) (2019, in press)

    Google Scholar 

  35. Khalid, A., Sundararajan, A., Hernandez, A., Sarwat, A.: Facts approach to address cybersecurity issues in electric vehicle battery systems. In: IEEE Technology and Engineering Management Conference (TEMSCON) (2019, in press)

    Google Scholar 

  36. Khalid, A., Sundararajan, A., Sarwat, A.I.: A multi-step predictive model to estimate Li-ion state of charge for higher c-rates. In: 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe) (2019, in press)

    Google Scholar 

  37. Khalid, A.: Electricity usage monitoring using face recognition technique. Int. J. Emerg. Technol. Adv. Eng. 2(10), 274–276 (2012)

    Google Scholar 

  38. Kim, C., Kim, M., Park, H., Moon, G.: A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV. IEEE Trans. Power Electron. 27(8), 3764–3774 (2012)

    Article  Google Scholar 

  39. Kirchev, A.: Battery management and battery diagnostics. In: Moseley, P.T., Garche, J. (eds.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, chap. 20, pp. 411–435. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  40. Kollmeyer, P.: Panasonic 18650PF Li-ion battery data (2018). https://data.mendeley.com/datasets/wykht8y7tg/1

  41. Konishi, Y., Huang, Y.-S., Luor, T.-S.: Bridge battery voltage equalizer. US Patent US7612530B2 (2006)

    Google Scholar 

  42. Teja, G.K., Prabhaharan, S.R.S.: Smart battery management system with active cell balancing. Indian J. Sci. Technol. 8, 1 (2015)

    Google Scholar 

  43. Kroeze, R.C., Krein, P.T.: Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electronics Specialists Conference, pp. 1336–1342, June 2008

    Google Scholar 

  44. Kutkut, N.H., Wiegman, H.L.N., Divan, D.M., Novotny, D.W.: Charge equalization for an electric vehicle battery system. IEEE Trans. Aerosp. Electron. Syst. 34(1), 235–246 (1998)

    Article  Google Scholar 

  45. Li, J., Mazzola, M., Gafford, J., Younan, N.: A new parameter estimation algorithm for an electrical analogue battery model. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 427–433, February 2012

    Google Scholar 

  46. Li, J., Mazzola, M.S.: Accurate battery pack modeling for automotive applications. J. Power Sources 237, 215–228 (2013)

    Article  Google Scholar 

  47. Li, J., Mazzola, M.S., Gafford, J., Jia, B., Xin, M.: Bandwidth based electrical-analogue battery modeling for battery modules. J. Power Sources 218, 331–340 (2012)

    Article  Google Scholar 

  48. Li, Y., Han, Y.: A module-integrated distributed battery energy storage and management system. IEEE Trans. Power Electron. 31(12), 8260–8270 (2016)

    Article  Google Scholar 

  49. Liaw, B.Y., Jungst, R.G., Nagasubramanian, G., Case, H.L., Doughty, D.H.: Modeling capacity fade in lithium-ion cells. J. Power Sources 140(1), 157–161 (2005)

    Article  Google Scholar 

  50. Ling, R., Dan, Q., Zhang, J., Chen, G.: A distributed equalization control approach for series connected battery strings. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 5102–5106, May 2014

    Google Scholar 

  51. Liu, W., Song, Y., Liao, H., Li, H., Zhang, X., Jiao, Y., Peng, J., Huang, Z.: Distributed voltage equalization design for supercapacitors using state observer. IEEE Trans. Ind. Appl. 55(1), 620–630 (2018)

    Article  Google Scholar 

  52. Brandl, M., Gall, H., Wenger, M., Lorentz, V., Giegerich, M., Baronti, F., Fantechi, G., Fanucci, L., Roncella, R., Saletti, R., Saponara, S., Thaler, A., Cifrain, M., Prochazka, W.: Batteries and battery management systems for electric vehicles, pp. 971–976, March 2012

    Google Scholar 

  53. Mayer, S., Geddes, L.A., Bourland, J.D., Ogborn, L.: Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30(5), 538–542 (1992)

    Article  Google Scholar 

  54. Narayanaswamy, S., Kauer, M., Steinhorst, S., Lukasiewycz, M., Chakraborty, S.: Modular active charge balancing for scalable battery packs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(3), 974–987 (2017)

    Article  Google Scholar 

  55. Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today 15(April), 252–264 (2015)

    Article  Google Scholar 

  56. Omar, N., Widanage, D., Abdel Monem, M., Firouz, Y., Hegazy, O., Van den Bossche, P., Coosemans, T., Van Mierlo, J.: Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries. Int. Trans. Electrical Energy Syst. 24(12), 1747–1767 (2013)

    Article  Google Scholar 

  57. Pang, S., Farrell, J., Du, J., Barth, M.: Battery state-of-charge estimation. In: Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148), vol. 2, pp. 1644–1649, June 2001

    Google Scholar 

  58. Perez, A., Moreno, R., Moreira, R., Orchard, M., Strbac, G.: Effect of battery degradation on multi-service portfolios of energy storage. IEEE Trans. Sustain. Energy 7(4), 1718–1729 (2016)

    Article  Google Scholar 

  59. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. Modeling and identification. J. Power Sources 134(2), 262–276 (2004)

    Article  Google Scholar 

  60. Qi, J., Lu, D.D.C.: Review of battery cell balancing techniques. In: 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6, September 2014

    Google Scholar 

  61. Rehman, M.U.: Modular, Scalable Battery Systems with Integrated Cell Balancing and DC Bus Power Processing. Ph.D. thesis (2018)

    Google Scholar 

  62. Rui, L., Lizhi, W., Xueli, H., Qiang, D., Jie, Z.: A review of equalization topologies for lithium-ion battery packs. In: 2015 34th Chinese Control Conference (CCC), pp. 7922–7927, July 2015

    Google Scholar 

  63. Salameh, Z.M., Casacca, M.A., Lynch, W.A.: A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 7(1), 93–98 (1992)

    Article  Google Scholar 

  64. Schonberger, J.: Modeling a lithium-ion cell using PLECS. In: Plexim GmbH, pp. 1–5 (2009)

    Google Scholar 

  65. Schweiger, H.G., Obeidi, O., Komesker, O., et al.: Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors 10(6), 5604–5625 (2010)

    Article  Google Scholar 

  66. Steinhorst, S., Shao, Z., Chakraborty, S., Kauer, M., Li, S., Lukasiewycz, M., Narayanaswamy, S., Rafique, M.U., Wang, Q.: Distributed reconfigurable battery system management architectures. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 429–434, January 2016

    Google Scholar 

  67. Subburaj, A.S., Bayne, S.B.: Analysis of dual polarization battery model for grid applications. In: 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), pp. 1–7, September 2014

    Google Scholar 

  68. Sundararajan, A., Khan, T., Moghadasi, A., Sarwat, A.I.: Survey on synchrophasor data quality and cybersecurity challenges, and evaluation of their interdependencies. J. Mod. Power Syst. Clean Energy 7(3), 449–467 (2018)

    Article  Google Scholar 

  69. Sundararajan, A., Sarwat, A.I.: Roadmap to prepare distribution grid-tied photovoltaic site data for performance monitoring. In: 2017 International Conference on Big Data, IoT and Data Science (BID), pp. 110–115, December 2017

    Google Scholar 

  70. Thanagasundram, S., Arunachala, R., Makinejad, K., Teutsch, T., Jossen, A.: A cell level model for battery simulation, pp. 1–13, November 2012

    Google Scholar 

  71. Tsang, K.M., Chan, W.L., Wong, Y.K., Sun, L.: Lithium-ion battery models for computer simulation. In: 2010 IEEE International Conference on Automation and Logistics, pp. 98–102, August 2010

    Google Scholar 

  72. Uno, M., Kukita, A.: Bidirectional PWM converter integrating cell voltage equalizer using series-resonant voltage multiplier for series-connected energy storage cells. IEEE Trans. Power Electron. 30(6), 3077–3090 (2015)

    Article  Google Scholar 

  73. Johnson, V.H., Pesaran, A.A., Sack, T.: Temperature-dependent battery models for high-power lithium-ion batteries. In: 17th Annual Electric Vehicle Symposium, vol. 12, pp. 1–14 (2001)

    Google Scholar 

  74. Verbrugge, M.W., Conell, R.S.: Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration. J. Electrochem. Soc. 149(1), A45–A53 (2002)

    Article  Google Scholar 

  75. Waag, W., Fleischer, C., Sauer, D.U.: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014)

    Article  Google Scholar 

  76. Wehbe, J., Karami, N.: Battery equivalent circuits and brief summary of components value determination of lithium ion: a review. In: 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 45–49, April 2015

    Google Scholar 

  77. Yun, J., Yeo, T., Park, J.: High efficiency active cell balancing circuit with soft-switching technique for series-connected battery string. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3301–3304, March 2013

    Google Scholar 

  78. Zhang, C., Li, K., Mcloone, S., Yang, Z.: Battery modelling methods for electric vehicles - a review. In: 2014 European Control Conference (ECC), pp. 2673–2678, June 2014

    Google Scholar 

  79. Zhang, X., Zhang, W., Lei, G.: A review of Li-ion battery equivalent circuit models. Trans. Electr. Electron. Mater. 17, 311–316 (2016)

    Article  Google Scholar 

  80. Zhao, X., Cai, Y., Yang, L., Deng, Z., Qiang, J.: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles. Energy 135, 40–52 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The material published is a result of the research supported by the National Science Foundation under the Award number CNS-1553494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif I. Sarwat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalid, A., Hernandez, A., Sundararajan, A., Sarwat, A.I. (2020). Simulation-Based Analysis of Equalization Algorithms on Active Balancing Battery Topologies for Electric Vehicles. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_52

Download citation

Publish with us

Policies and ethics