Skip to main content

The First Quantum Co-processor Hybrid for Processing Quantum Point Cloud Multimodal Sensor Data

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1069))

Included in the following conference series:

Abstract

The large-scale multimodal sensor fusion of the internet of things (IoT) data can be transformed into an N-dimensional classical point cloud. For example, the transformation may be the fusion of three imaging modalities of different natures such as LiDAR (light imaging, detection, and ranging), a set of RGB images, and a set of thermal images. However, it is not easy to process a point cloud because it can have millions or even hundreds of millions of points. Classical computers therefore often crash when operating a point cloud of multimodal sensor data. Quantum Point Clouds (QPC) address the problem of uncertainty in multi-modal sensor data, such that precognitive/predictive models can be derived with outcomes of greater certainty than classical information processing methods. This paper presents early experiments of the first application of a quantum co-processor hybrid for processing quantum point cloud multimodal sensor data from an autonomous racing car. Applied to the more complex case of cave mapping, it then describes the first hybrid classical-quantum co-processor, comprising a graphical processing unit, differential pulse code modulator and a quantum computer. The graphical processing unit comprises a multiple input/output data interface, transformation means for transforming a fused depth bitmap of the multi-modal sensor data into a point cloud representation with world coordinates, control logic that manages the multiple input/output data interface, and the differential pulse code modulator. The quantum co-processor comprises an assembly of quantum computing chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, N., Hu, H., Dang, Y., Zhang, W.: Quantum point cloud and its compression. Int. J. Theor. Phys. 56, 3147–3163 (2017)

    Article  Google Scholar 

  2. Luo, Z., Zheng, W., Li, J., Zhao, M., Peng, X., Suter, D.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7, 031041 (2017)

    Google Scholar 

  3. https://www.sciencedirect.com/topics/engineering/point-cloud

  4. (2015). http://pointclouds.org/about/

  5. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

    Google Scholar 

  6. Cao, M., Wang, P., Wu, L., Lu, Q., Lu, Z., Lu, Q.: The research on the online publishing platform of point clouds of chinese cultural heritage based on LIDAR technology: a case study of chen clan academy in Guangzhou, Guangdong Province. In: IOP Conference Series Materials Science and Engineering, vol. 452, p. 032019, December 2018

    Article  Google Scholar 

  7. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Artif. Intell. Rev. 43, 55 (2015). https://doi.org/10.1007/s10462-012-9365-8F

    Article  Google Scholar 

  8. Satyajit, S., Srinivasan, K., Behera, B.K., et al.: Quantum Inf. Process. 17, 212 (2018). https://doi.org/10.1007/s11128-018-1976-9

    Article  Google Scholar 

  9. Gustavson, T.L., Bouyer, P., Kasevich, M.A.: Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997)

    Article  Google Scholar 

  10. Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  Google Scholar 

  11. Shah, V., Knappe, S., Schwindt, P.D.D., Kitching, J.: Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photon. 1, 649–652 (2007)

    Article  Google Scholar 

  12. Aasi, J., et al.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)

    Article  Google Scholar 

  13. Cutler, C.C.: Differential quantization of communication signals. U.S. patent 2,605,361 (filed 1950, issued 1952)

    Google Scholar 

  14. Wasilewski, W., et al.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010)

    Article  Google Scholar 

  15. Frangou, G.J.: Great Britain Provisional Patent Application 1816049: Processing Quantum Point Cloud Multimodal Sensor Data (2018)

    Google Scholar 

  16. Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)

    Article  Google Scholar 

  17. Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  MathSciNet  Google Scholar 

  18. Frangou, G.J.: U.S. Patent No. 9,645,576 Chinese Patent 1,051,892,37, Japanese Patent 2,016,520,464, Israel Patent 2,416,88, European Patent Application 2,976,240, Korean Patent Application 2,015,013,8257, PCT Patent Application 2,014,147,361: Apparatus for Controlling a Land Vehicle which is Self-Driving or Partially Self- Driving (2013)

    Google Scholar 

  19. Leibfried, D., et al.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  Google Scholar 

  20. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Frangou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frangou, G.J., Chretien, S., Rungger, I. (2020). The First Quantum Co-processor Hybrid for Processing Quantum Point Cloud Multimodal Sensor Data. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_32

Download citation

Publish with us

Policies and ethics