Skip to main content

Abstract

The development of massive multiple-input multiple-output (MaMIMO) techniques is motivated by the requirements of large spectral efficiency and reduced power consumption. The implementation of a large number of antennas offers a large spectral efficiency and link reliability. Moreover, the use of MaMIMO allows scaling down the transmitted power proportionally to the number of antennas used, which may lead to a significant improvement in terms of energy efficiency. Orthogonal frequency division multiplexing (OFDM) in combination with MaMIMO has a considerable potential to obtain very high data rates and high quality of service (QoS). However, MaMIMO systems require a mobile equipped with multiple antennas at the transmitter. This is a challenging issue in mobile devices mostly due to their size, cost, and computing power limitations. In MaMIMO, the radiated power per antenna decreases linearly with the number of antennas. Moreover, the effects of small-scale fading, non-coherent interference, and receiver noise are minimized. However, a massive number of antennas require a separate transceiver chain and power amplifier (PA) for each antenna (unless analog or hybrid analog-digital structures are used for beamforming purposes, in which case the number of RF chains can be reduced). In this situation, the size and costs of the analog front-end become a critical issue. The cost and size optimization implies the use of low-cost components which increase the imperfections that degrade the system performance. In this chapter, MaMIMO system performance, considering front-end RF imperfections and ADC/DAC with limited resolution, is carefully studied. Spectral and energy efficiency for the uplink and downlink scenarios are evaluated to quantify the overall system performance. Finally, low-resolution precoding techniques, antenna coupling, channel non-reciprocity, and channel estimation errors are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  2. F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

    Article  Google Scholar 

  3. L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  4. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  5. C.-S. Park, Y.-S. Byun, A.M. Bokiye, Y.-H. Lee, Complexity reduced zero-forcing beamforming in massive MIMO systems, in Information Theory and Applications Workshop (ITA) (2014), pp. 1–5

    Google Scholar 

  6. E. Björnson, J. Hoydis, M. Kountouris, M. Debbah, Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits. IEEE Trans. Inf. Theory 60(11), 7112–7139 (2014)

    Article  MathSciNet  Google Scholar 

  7. N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045–5060 (2006)

    Article  MathSciNet  Google Scholar 

  8. O. Raeesi, A. Gokceoglu, P.C. Sofotasios, M. Renfors, M. Valkama, Modeling and estimation of massive MIMO channel non-reciprocity: sparsity-aided approach, in 2017 25th European Signal Processing Conference (EUSIPCO) (2017), pp. 2596–2600

    Google Scholar 

  9. O. Raeesi, A. Gokceoglu, Y. Zou, E. Björnson, M. Valkama, Performance analysis of multi-user massive MIMO downlink under channel non-reciprocity and imperfect CSI. IEEE Trans. Commun. 66(6), 2456–2471 (2018)

    Article  Google Scholar 

  10. Y. Zou, O. Raeesi, R. Wichman, A. Tolli, M. Valkama, Analysis of channel non-reciprocity due to transceiver and antenna coupling mismatches in TDD precoded multi-user MIMO-OFDM downlink, in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall) (2014), pp. 1–7

    Google Scholar 

  11. J. Choi, Downlink multiuser beamforming with compensation of channel reciprocity from RF impairments. IEEE Trans. Commun. 63(6), 2158–2169 (2015)

    Article  Google Scholar 

  12. J. Vieira, F. Rusek, F. Tufvesson, Reciprocity calibration methods for massive MIMO based on antenna coupling, in 2014 IEEE Global Communications Conference (2014), pp. 3708–3712

    Google Scholar 

  13. H. Wei, D. Wang, H. Zhu, J. Wang, S. Sun, X. You, Mutual coupling calibration for multiuser massive MIMO systems. IEEE Trans. Wireless Commun. 15(1), 606–619 (2016)

    Article  Google Scholar 

  14. T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  15. O. Elijah, C.Y. Leow, T.A. Rahman, S. Nunoo, S.Z. Iliya, A comprehensive survey of pilot contamination in massive MIMO 5G system. IEEE Commun. Surv. Tuts. 18(2), 905–923 (2016)

    Article  Google Scholar 

  16. F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

    Article  Google Scholar 

  17. K. Upadhya, S.A. Vorobyov, M. Vehkaper, Downlink performance of superimposed pilots in massive MIMO systems. IEEE Trans. Wireless Commun. 17(10), 6630–6644 (2018)

    Article  Google Scholar 

  18. E. Björnson, E.G. Larsson, M. Debbah, Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated? IEEE Trans. Wireless Commun. 15(2), 1293–1308 (2016)

    Article  Google Scholar 

  19. K. Upadhya, S.A. Vorobyov, M. Vehkapera, Superimposed pilots: an alternative pilot structure to mitigate pilot contamination in massive MIMO, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2016), pp. 3366–3370

    Google Scholar 

  20. K. Upadhya, S.A. Vorobyov, An array processing approach to pilot decontamination for massive MIMO, in 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2015), pp. 453–456

    Google Scholar 

  21. H.Q. Ngo, E.G. Larsson, EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2012), pp. 3249–3252

    Google Scholar 

  22. R.R. Müller, L. Cottatellucci, M. Vehkaperä, Blind pilot decontamination. IEEE J. Sel. Top. Signal Process. 8(5), 773–786 (2014)

    Article  Google Scholar 

  23. Texas instruments ADC products, http://www.ti.com/lsds/ti/data-converters/analog-to-digital-converter-products.page (2019)

  24. M. Sarajli, L. Liu, O. Edfors, When are low resolution ADCs energy efficient in massive MIMO? IEEE Access 5, 14837–14853 (2017)

    Article  Google Scholar 

  25. D. Verenzuela, E. Björnson, M. Matthaiou, Hardware design and optimal ADC resolution for uplink massive MIMO systems, in 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), (2016), pp. 1–5

    Google Scholar 

  26. M. Sarajlic, L. Liu, O. Edfors, An energy efficiency perspective on massive MIMO quantization, in 2016 50th Asilomar Conference on Signals, Systems and Computers (2016), pp. 473–478

    Google Scholar 

  27. Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A.L. Swindlehurst, L. Liu, Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans. Signal Process. 65(15), 4075–4089 (2017)

    Article  MathSciNet  Google Scholar 

  28. J.J. Bussgang, Cross correlation function of amplitude-distorted Gaussian input signals, Res. Lab Electron., M.I.T., Cambridge, MA, Tech. Rep. 216, vol. 3 (1952)

    Google Scholar 

  29. S. Jacobsson, G. Durisi, M. Coldrey, C. Studer, Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM downlink. IEEE Trans. Wireless Commun. 18(3), 1595–1609 (2019)

    Article  Google Scholar 

  30. C. Desset, L. Van der Perre, Validation of low-accuracy quantization in massive MIMO and constellation EVM analysis, in 2015 European Conference on Networks and Communications (EuCNC) (2015), pp. 21–25

    Google Scholar 

  31. E. Björnson, L. Sanguinetti, J. Hoydis, M. Debbah, Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer? IEEE Trans. Wireless Commun. 14(6), 3059–3075 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorio, F., González, G., Schmidt, C., Cousseau, J. (2020). Massive MIMO Systems. In: Signal Processing Techniques for Power Efficient Wireless Communication Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-32437-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32437-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32436-0

  • Online ISBN: 978-3-030-32437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics