Skip to main content

Attenuation Imaging with Pulse-Echo Ultrasound Based on an Acoustic Reflector

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11768))

Abstract

Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

References

  1. Bamber, J.C., Hill, C.R.: Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultras. Med. Biol. 5(2), 149–157 (1979)

    Article  Google Scholar 

  2. Bamber, J.C., Hill, C.R., King, J.A.: Acoustic properties of normal and cancerous human liver: dependence on tissue structure. Ultras. Med. Biol. 7(2), 135–144 (1981)

    Article  Google Scholar 

  3. Chang, C.H., Huang, S.W., Yang, H.C., Chou, Y.H., Li, P.C.: Reconstruction of ultrasonic sound velocity and attenuation coefficient using linear arrays: clinical assessment. Ultras. Med. Biol. 33(11), 1681–1687 (2007)

    Article  Google Scholar 

  4. Duric, N., et al.: Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med. Phys. 34(2), 773–785 (2007)

    Article  Google Scholar 

  5. Eby, S.F., Song, P., Chen, S., Chen, Q., Greenleaf, J.F., An, K.N.: Validation of shear wave elastography in skeletal muscle. J. Biomech. 46(14), 2381–2387 (2013)

    Article  Google Scholar 

  6. Glozman, T., Azhari, H.: A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography. J. Ultras. Med. 29(3), 387–398 (2010)

    Article  Google Scholar 

  7. Goss, S.A., Johnston, R.L., Dunn, F.: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64, 423–457 (1978)

    Article  Google Scholar 

  8. Goss, S.A., Johnston, R.L., Dunn, F.: Compilation of empirical ultrasonic properties of mammalian tissues. II. J. Acoust. Soc. Am. 68(1), 93–108 (1980)

    Article  Google Scholar 

  9. Huang, S.W., Li, P.C.: Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array. IEEE Trans. Ultras. Ferr. Freq. Control 52(11), 2011–2022 (2005)

    Article  Google Scholar 

  10. Li, C., Sandhu, G.Y., Boone, M., Duric, N.: Breast imaging using waveform attenuation tomography. In: Procs SPIE Med Imaging, vol. 10139, p. 101390A (2017)

    Google Scholar 

  11. Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2019)

    Article  Google Scholar 

  12. Sanabria, S., et al.: Speed of sound ultrasound: a novel technique to identify muscle loss in seniors. Eur. Radiol. 29(1), 3–12 (2019)

    Article  Google Scholar 

  13. Sanabria, S.J., Goksel, O.: Hand-held sound-speed imaging based on ultrasound reflector delineation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 568–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_66

    Chapter  Google Scholar 

  14. Sanabria, S.J., et al.: Breast-density assessment with handheld ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018)

    Article  Google Scholar 

  15. Sanabria, S.J., Ozkan, E., Rominger, M., Goksel, O.: Spatial domain reconstruction for imaging speed-of-sound with pulse-echo ultrasound: simulation and in vivo study. Phys. Med. Biol. 63(21), 215015 (2018)

    Article  Google Scholar 

  16. Sandrin, L., Tanter, M., Catheline, S., Fink, M.: Shear modulus imaging with 2-D transient elastography. IEEE Trans. Ultras. Ferr. Freq. Control 49(4), 426–435 (2002)

    Article  Google Scholar 

  17. Smith, N.B., Webb, A.G.: Introduction to Medical Imaging: Physics, Engineering, and Clinical Applications. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  18. Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)

    Article  Google Scholar 

  19. Vishnevskiy, V., Rau, R., Goksel, O.: Deep variational networks with exponential weighting for learning computed tomography. In: MICCAI (2019, accepted). arXiv:1906.05528

  20. Vishnevskiy, V., Sanabria, S.J., Goksel, O.: Image reconstruction via variational network for real-time hand-held sound-speed imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 120–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00129-2_14

    Chapter  Google Scholar 

Download references

Funding

It was provided by the Swiss National Science Foundation and Innosuisse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Rau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rau, R., Unal, O., Schweizer, D., Vishnevskiy, V., Goksel, O. (2019). Attenuation Imaging with Pulse-Echo Ultrasound Based on an Acoustic Reflector. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11768. Springer, Cham. https://doi.org/10.1007/978-3-030-32254-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32254-0_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32253-3

  • Online ISBN: 978-3-030-32254-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics